VPDES PERMIT FACT SHEET

This document gives pertinent information concerning the reissuance of the VPDES permit listed below. This permit is being processed as a **Minor Industrial** permit. The effluent limitations contained in this permit will maintain the Water Quality Standards of 9 VAC 25-260. The discharges result from groundwater dewatering sumps and storm water runoff from locomotive refueling and locomotive and rail care repair and maintenance activities. This permit action consists of reissuing the permit for a five-year term with limitations on pH, TSS, TOC, copper, and Oil & Grease. The permit also addresses storm water pollution prevention.

1. Facility Name and Address:

SIC Code: 4011

Norfolk Southern Railway Company – Shaffers Crossing 1200 Peachtree Street NE, Box 13 Atlanta, GA 30309

Location: 24th Street & Johnson Avenue, Roanoke, VA 24017 (Roanoke City)

2. Permit No. VA0001597

Expiration Date: August 29, 2015

3. Owner Contact: Name: Mr. Gaymeon V. Gibson

Title: Environmental Compliance Officer

Telephone No: (404) 582-4239

4. Application Complete Date: July 2, 2015

Permit Drafted By: Lynn V. Wise Date: July 20, 2015

DEQ Regional Office: Blue Ridge Regional Office

Reviewed By: Lewis Pillis Date: July 24, 2015

Public Comment Period Dates: From: 7/24/15

To: 8/24/15

5. Receiving Stream Names: Lick Run, UT and Horton's Creek River Mile: 3.51 and 0.4

Basin: Roanoke River
Subbasin: Roanoke River

Section: 6d Class: IV Special Standards: None

	Lick Run, UT	Horton's Creek
7-Day, 10 Year Low Flow:	0 mgd	0 mgd
1-Day, 10 Year Low Flow:	0 mgd	0 mgd
30-Day, 5-Year Low Flow:	0 mgd	0 mgd
30-Day, 10-Year Low Flow	0 mgd	0 mgd
Harmonic Mean Flow:	0 mgd	0 mgd

Tidal? YES/NO

On 303(d) list? **YES/NO**

6. Operator License Requirements: None 7. Reliability Class: NA

8.	Permit Character	ization:				
	(X) Private	() Fed	leral	() State	() POTW	
	() Possible Inters	state Effect	() Interim	Limits in Other D	ocument (attach to	Fact Sheet)

9. Description of Facility Activities:

Discharge Description

OUTFALL NUMBER	DISCHARGE SOURCE (1)	TREATMENT (2)	FLOW (3)
002/902	Ground Water Dewatering, Storm water Compressor Blowdown/Condensate	Grit Removal, Flow Equalization, Oil/Water Separator	0.043
004	Storm water associated with industrial activity	None	NA
005	Storm water associated with industrial activity	None	NA

- (1) List operations contributing to flow.
- (2) Give brief description, unit by unit.
- (3) Give maximum 30-day average flow for industry, and design flow for municipal.

See Attachment A for a schematic diagram showing the wastewater treatment system and storm water drainage areas.

The Shaffers Crossing facility is a locomotive and car repair shop and refueling facility owned and operated by Norfolk Southern Railway. It operates 24 hours a day, seven days a week. Former outfalls 001 and 003 have been routed to the sanitary sewer. Storm water and ground water from the owner's property which is leased for a scrap yard by Progress Rail Services still discharges to former outfall 003 and is covered by the General Permit for Discharges of Storm Water Associated with Industrial Activity (VAR050522). Although previously reported as being routed to the sanitary sewer, it was noted during the last permit reissuance process that storm water is still discharged through outfall 004. However, the majority of the storm water from the areas most likely to be contaminated is routed to the wastewater treatment plant prior to discharge to the sanitary sewer.

Outfall 002

Dry weather discharges to 002 include ground water sump discharges from the car repair shop and hopper car wash facility as well as hump compressor blow down and condensate (which were not listed on the permit application). Compressor blowdown and condensate is collected and treated through a Beko unit. This unit, which was put into service around October 2009, was installed mainly for copper removal due to compliance difficulties at outfall 002. First the water passes through an oil/water separator, then polymer is added and the water passes through two fleece filter bags. The treated compressor condensate combines with storm water prior to final treatment and discharge at outfall 002. Wastewater from the hopper car wash facility is routed to the pretreatment plant and on to the sanitary sewer. Contents of covered hopper cars cleaned include lime, nitrogen and phosphate fertilizers, grain, and feed. Although the area is swept daily, dust from cleaning of these cars may be carried by storm water.

9. Description of Facility Activities (continued):

Storm water from the car shop and class (hump) yard is collected, routed to a treatment system and discharged through Outfall 902. The collection system has a series of small catch basins that act as grit collection points. The storm water is then directed to a grit chamber, an oil/water separator, and to a final discharge point at a storm drain to an unnamed tributary of Lick Run.

Outfall 004

This outfall receives storm water from the area around the storm water storage tanks and from the roof drains of three buildings in the area: the "mod" building (previously known as the new expedite building), the oil/test lab, and the women's locker room. The discharge is to Horton's Creek.

Outfall 005

Storm water from between the transfer table and the wheel truing building and from the locomotive maintenance shop roof drains and employee parking areas is directed to this outfall. According to agency files, a drop inlet near the northwest corner of the locomotive maintenance facility was blocked at DEQ's request after a borate solution cooling water spill in 1991. A dry weather flow has been sampled and is believed to be ground water infiltration.

Sludge Processing Area

Sludges collected from all of the grit chambers and oil/water separators are dewatered onsite and then trucked to a landfill. The sludges are collected by truck and transferred to a concrete collection tank located outside of the sludge processing building. The sludge is then pumped into the building where polymer is injected and the amended sludge is allowed to air dry on covered drying beds. The polymer tanks are located inside the building, such that any leaks would drain back to the concrete holding tank. An 8,000 gallon waste oil tank is located outside of the sludge building. Oil that is collected throughout the facility is transferred to this tank and then disposed of offsite through a contract operation. The waste oil tank has a sump which pumps rainwater and any spills over to the concrete collection tank.

Storm water from the sludge building area flows into the bermed dikes around the AST tanks by way of a gully. The bermed areas are drained onto the ground if no oil sheen is observed.

A site visit memo and additional facility information (as provided with the permit application) are included in **Attachment A**.

10. Sewage Sludge Use or Disposal: Provide a description of sewage sludge land application plan elements addressed in permit, if applicable.

Not applicable.

11. Discharge(s) Location Description: The facility is located on the Roanoke, VA Quadrangle. (Please see **Attachment A.**)

Outfall 002 location: Latitude 37°16'44" Longitude 79°58'18" Outfall 004 location: Latitude 37°16'48" Longitude 79°58'38" Cutfall 005 location: Latitude 37°16'49" Longitude 79°58'38"

12. Material Storage:

As can be seen on the site map, there are numerous above ground petroleum product storage tanks onsite. All tanks are equipped with secondary containment. Additional materials are stored under roof to minimize exposure to storm water. Structural (dikes, berms, swales, ditches, and underground conveyances) and non-structural (personnel training, good housekeeping, routine inspections, and Spill Prevention, Control, and Countermeasure Plan) measures are in place to reduce pollutants in storm water run-off.

Materials include: used oil, lube oil, kerosene, journal oil, diesel fuel, gasoline, air compressor oil, hydraulic oil, fuel additive, dielectric fluid, antifreeze, propane, sulfuric acid, and mineral spirits.

Commercial herbicides are applied by a contract operation twice per year on gravel and paved areas. No herbicides are stored on-site.

Please see **Attachment A** for a site map showing location of storage tanks and a corresponding listing of quantities of materials stored.

13. Ambient Water Quality Information:

Outfall 002 discharges to an unnamed tributary to Lick Run at river mile 3.51, while outfalls 004 and 005 discharge to Horton's Creek near river mile 0.42. These receiving streams are located in the Tinker Creek/Carvin Creek/Glade Creek watershed (water body ID VAW-L05R) and are classified as Class IV (Mountainous Zone) waters with no special standards. These streams are not shown on the USGS topographical map as streams (intermittent or otherwise) as they are actually drainage ditches or storm sewers which ultimately discharge to the Roanoke River (Lick Run first enters Tinker Creek). Flow frequencies for each of the streams are zero cfs for the 1Q10, 7Q10, 30Q5, high flow 1Q10, high flow 7Q10, and harmonic mean. Please see **Attachment** B for a copy of the Flow Frequency Determination memo from 1999, which remains accurate although eliminated outfalls are also listed.

The nearest ambient water quality monitoring stations are located on the main stem of Lick Run upstream (4ALCK002.17) and downstream (4ALCK000.38) of the point where the unnamed tributary enters; the closest monitoring station on the Roanoke River is located at river mile 202.20. The most recent monitoring data are tabulated in **Attachment B**. The 2012 303(d) report lists 9.36 miles of Lick Run as impaired beginning near the Shaffers Crossing rail yard and extending downstream to the mouth of Lick Run on Tinker Creek. The segment is listed as impaired for not supporting recreational use due to exceedances of the *E. coli* bacteria criteria. This segment was initially listed in 1996 and was expanded by 5.01 miles in 2004. Similarly, the segment of the Roanoke River where Horton's Creek discharges, the segment where Lick Run enters Tinker Creek, and the segment where Tinker Creek enters the Roanoke River are listed as impaired due to bacteria. The Roanoke River is also listed due to a benthic impairment; the cause of the impairment was determined to be sediment. Finally, Tinker Creek and the Roanoke River are listed as impaired due to a fish consumption advisory due to PCBs in fish tissue. Additional details regarding the impairments can be found in the 2012 Water Quality Assessment & 303(d) Impaired Waters Fact Sheets for these segments in **Attachment B**. Additional information regarding TMDLs for this watershed can be found in Section 25 of the Fact Sheet.

As required by the application Form 2F, the permittee reported significant spills and leaks at the facility over the past few years. This list may be found in **Attachment B**.

14.	Antidegradation I	Review &	Comments:
~	I MINIMO SIMMUNIO II I		Committee .

Tier:	I _X_	II	III

The State Water Control Board's Water Quality Standards includes an antidegradation policy (9 VAC 25-260-30). All state surface waters are provided one of three levels of antidegradation protection. For Tier 1 or existing use protection, existing uses of the water body and the water quality to protect these uses must be maintained. Tier 2 water bodies have water quality that is better than the water quality standards. Significant lowering of the water quality of Tier 2 waters is not allowed without an evaluation of the economic and social impacts. Tier 3 water bodies are exceptional waters and are so designated by regulatory amendment. The antidegradation policy prohibits new or expanded discharges into exceptional waters.

The antidegradation review begins with the Tier determination. As was previously noted, both the unnamed tributary to Lick Run and Horton's Creek are intermittent streams. Intermittent streams are afforded protection as a Tier 1 water body because they cannot be reasonably expected to maintain water quality better than the standards. It is noted that at the points where the discharges converge with the Roanoke River, the river is determined to be Tier 1 based on listing on the 303(d) list of impaired waters for not supporting the aquatic life use based on benthic impairment (general standard).

Permit limits for discharges into tier 1 waters are established by determining wasteload allocations (WLAs) that will result in attaining and/or maintaining all water standards that apply to such waters, including narrative criteria. Such WLAs will provide for the protection and maintenance of all existing uses.

Therefore, at the point of the Shaffers Crossing discharges, Horton's Creek and the unnamed tributary to Lick Run are classified as **Tier 1**.

Effluent limitations are discussed in detail in Section 16 below. The discharge is in compliance with antidegradation requirements set forth in the Water Quality Standard Regulation, 9 VAC 25-260-30. The antidegradation review was conducted as described in Guidance Memorandum 00-2011, dated August 24, 2000, and complies with the antidegradation policy contained in Virginia's Water Quality Standards.

- 15. Site Visit: Date July 8, 2015 Performed by: Lynn V. Wise

 Please see Attachment A for a copy of the site visit memo. A Technical, Laboratory, and Storm Water

 Inspection was conducted on May 8, 2013, by Mr. Ryan Hendrix, Compliance Inspector, Sr. A copy of the report is on file at the DEQ Blue Ridge Regional Office in Roanoke, VA.
- 16. Effluent Screening & Limitation Development:

General

A review of the DMR data for the past five years indicates the facility has been in compliance with the current limitations. The limitations from the permit were reviewed and carried forward as appropriate. Please see discussion below for each outfall. Effluent screening and limitation development documentation may be found in **Attachments C** and **D**.

Storm water discharges from the facility are regulated as "storm water associated with industrial activity". Evaluation of storm water management requirements is also discussed below.

16. Effluent Screening & Limitation Development:

Outfall 002

The Agency standard limits for oil/water separators and bulk oil storage are carried forward from the previous permit. This includes limits for Oil & Grease (average concentration 10 mg/l, maximum concentration 15 mg/l), pH (in the range of 6.0 to 9.0 su), Total Petroleum Hydrocarbons (TPH) (no limit, but annual monitoring required), and Total Organic Carbon (TOC) (maximum concentration of 110 mg/l). Limits for Total Suspended Solids (TSS) (average concentration 30 mg/l, maximum concentration 60 mg/l) are based on engineering judgment by a previous permit writer. Over the past permit term, there were no exceedances of these limitations. See DMR data in Attachment C.

Monitoring Frequency - Based on a history of consistently meeting the permit requirements, a reduction in monitoring frequency was considered on a parameter by parameter basis in accordance with agency guidance. To qualify for consideration, the facility should not have been issued any Warning Letters or Notices of Violation or be under any Consent Orders, Consent Decrees, Executive Compliance Agreements, or related enforcement documents during the past three years. The facility was found to be eligible for consideration and, based upon the evaluation of the data, frequencies have been reduced as follows: (See Attachment C for evaluation of effluent data.)

- Flow remains 1/month (no limitation)
- pH remains 1/month (maximum pH was within 0.5 su of the limit)
- TSS reduced from 1/month to 1/6 months (ratio of long-term average to the permit limit <25%)
- Oil & Grease reduced to 1/3 months (ratio of long-term average to the permit limit 49-25%)
- TOC reduced to 1/6 months (ratio of long-term average to the permit limit <25%)
- TPH remains 1/year (monitoring only, no limitation)
- Total Recoverable Copper remains 1/month (ratio of long term average to permit limit 75-66%); It is noted that a QL of 20 μg/l was used instead of 10 μg/l or less as required by the permit causing difficulty in accurately evaluating the data.

Toxics – During a previous permit reissuance process, effluent data for toxic parameters were evaluated for the reasonable potential to cause or contribute to violations of the Water Quality Standards adopted by the Board. No organic parameters were detected above the Quantification Level (QL). Evaluations were made for ammonia, copper, lead and zinc based on detection in the effluent. It was determined that effluent limitations were only required for **copper** (See **Attachment D**). The limit became effective August 29, 2004. There were three exceedances of the limit in 2007. As a result, treatment was installed for the air compressor blowdown/condensate. Since that time, there have been no violations of the copper limitation. The limits of 29 μg/l monthly average and daily maximum are retained in the permit. No additional data were collected for toxic parameters during this permit term.

Total Maximum Daily Load (TMDL) Monitoring – The facility has TMDL allocations in two (2) approved TMDLs: the Benthic (Sediment) TMDL for the Roanoke River and the PCB TMDL for the Roanoke River. The benthic (TSS) TMDL has one allocation for the industrial point source (Outfall 002) and one for stormwater from the site. The TSS limits described above are the basis of the TSS allocation for this outfall. The TSS allocation was based on an average discharge of 30 mg/l at a flow rate of 0.036 MGD. The long term average TSS concentration at this outfall is 5.8 mg/l at a flow rate of 0.0056 MGD, indicating compliance with the TMDL allocation. PCB monitoring is addressed under the special conditions section of the permit (see Section 19). Storm water allocations are discussed below. Additional TMDL information can be found in Section 25 of this Fact Sheet.

16. Effluent Screening & Limitation Development (continued):

Toxics Management Program (TMP)

Biological toxicity testing was required in previous permits on the effluent from outfall 002. Annual acute testing was required using alternating between *Ceriodaphnia dubia* and *Pimephales promelas*. Quarterly chronic testing was required using both species with subsequent annual monitoring alternating between *Ceriodaphnia dubia* and *Pimephales promelas*. The data collected since 1995 are presented in **Attachment C**. The results of these tests show that there is little potential for toxicity and no limitations were required. All of the acute tests over that ten year period passed with an LC₅₀ \geq 100%. Likewise, all but one of the chronic tests passed with an NOEC of 100%. The one failure was due to a nonlinear dose response in the Ceriodaphnia dubia reproduction test where there was no observed adverse effect in the 100% effluent concentration. Based upon these results, no further testing has been required.

Basis for Effluent Limitations

PARAMETER	BASIS	
Flow	NA – monitoring only	
TSS, Oil & Grease, TOC, TPH	3, Agency Standard Limitations and Case-by-Case Decision	
pH	2	
Copper, Total Recoverable	2	

- Federal Effluent guidelines cite CFR
- 2. Water Quality-based Limits: show calculations or cite WQM plan reference
- 3. Best Engineering Judgement: provide narrative rationale
- 4. Best Professional Judgement: provide narrative rationale
- 5. Other (e.g. wasteload allocation model): specify & document with model output or WLA from TMDL or basin plan

STORMWATER (Outfalls 902, 004, and 005)

Storm water is discharged from this site through three outfalls, 002 (designated as 902 for storm event monitoring), 004, and 005. All other storm water is treated and discharged to the sanitary sewer. DMR data and data provided on Form 2F can be found in **Attachment C**.

In accordance with the VPDES Permit Regulation (9 VAC 25-31-10 et seq.), storm water run-off from this site is regulated as storm water associated with industrial activity. All permits that authorize storm water discharges associated with industrial activity must include storm water management provisions. The five components of the storm water management provisions are: effluent limitations and compliance monitoring, analytical monitoring, storm water management evaluation, general storm water special conditions, and general and sector-specific storm water pollution prevention plan (SWPPP) conditions.

Based upon the Standard Industrial Classification (SIC) code of this facility, the storm water discharges are regulated under "Sector P - Land Transportation and Warehousing". EPA Effluent Guidelines do not apply to this sector; therefore, effluent limitations and compliance monitoring are not required. The 2014 reissuance of the VPDES General Permit for Discharges of Storm Water Associated with Industrial Activity included Analytical (Benchmark) Monitoring for this sector. Semiannual Total Suspended Solids (TSS) and Total Petroleum Hydrocarbons (TPH) monitoring is required. Monitoring is also being required for parameters that were detected above the EPA Benchmark values (nitrite + nitrate at outfalls 902 and 005) and parameters for which limits were previously effective (pH at outfall 005). Limits for pH and TSS at outfall 002 also apply during storm event monitoring at outfall 902. Semiannual monitoring is being implemented to be consistent with the VPDES General Stormwater permit regulation.

16. Effluent Screening & Limitation Development (continued):

TMDL Monitoring – The storm water run-off from this site discharges to an impaired water body. The approved Benthic (Sediment) TMDL for the Roanoke River includes a Total Suspended Solids allocation of 28.83 tons/year for the storm water discharges from the site. The allocation was derived assuming a concentration equal to the benchmark value of 100 mg/l (Note that outfall 902 has a TSS limit of 60 mg/l maximum). Semiannual monitoring is required at each storm water outfall. Exceedances of the TSS benchmark at outfalls 004 and 005 must be addressed through review and amendment of the SWPPP. The approved PCB TMDL allocated 35.6 mg/year to this site. PCB monitoring is addressed under the special conditions section of the permit. (See Section 19 of this Fact Sheet for additional details.) The approved bacteria TMDL for the Tinker Creek watershed did not include an allocation for this facility as it is not expected to be a source of bacteria. No bacteria monitoring is required.

The need for a storm water management evaluation is determined by comparing available storm water data to the screening criteria. Screening criteria have been established at two times the acute water quality criteria in the Water Quality Standards regulation. None of the storm water data for this facility were above the respective screening criteria. Therefore, storm water management evaluation requirements are not being implemented at this time. However, as noted above, some of the data were above the EPA Benchmark Values for non-water quality standard parameters. It is recommended that the permittee re-examine the effectiveness of the SWPPP and implement any necessary BMPs to improve the quality of the storm water leaving the site.

The final two components of the storm water management provisions will be addresses under the special conditions of the permit and Section 19 of this Fact Sheet.

17. Antibacksliding Statement:

All limitations are at least as stringent as the previous permit. The permit is in compliance with the antibacksliding policy.

18. Compliance Schedules: None

19. Special Conditions:

a. Notification Levels

Rationale: Required by VPDES Permit Regulation, 9 VAC 25-31-200 A for all manufacturing, commercial, mining, and silvicultural dischargers.

b. O&M Manual Requirement

Rationale: Required by Code of Virginia § 62.1-44.16; VPDES Permit Regulation, 9 VAC 25-31-190 E, and 40 CFR 122.41(e). These require proper operation and maintenance of the permitted facility. Compliance with an approved O&M manual ensures this.

c. Materials Handling/Storage

Rationale: 9 VAC 25-31-50 A prohibits the discharge of any wastes into State waters unless authorized by permit. Code of Virginia § 62.1-44.16 and 62.1-44.17 authorizes the Board to regulate the discharge of industrial waste or other waste.

19. Special Conditions (continued):

d. Compliance Reporting

Rationale: Authorized by VPDES Permit Regulation, 9 VAC 25-31-190 J 4 and 220 I. This condition is necessary when pollutants are monitored by the permittee and a maximum level of quantification and/or a specific analytical method is required in order to assess compliance with a permit limit or to compare effluent quality with a numeric criterion. The condition also establishes protocols for calculation of reported values.

e. Sludge Lagoon Closure Plan

Rationale: State Water Control Law § 62.1-44.21 authorizes the Board to request information needed to determine the discharge's impact on State waters. Ground water monitoring for parameters of concern will indicate whether possible lagoon seepage is resulting in violations to the State Water Control Board's Ground Water Standards.

During the early to late 1970s, the Shaffers Crossing facility operated six surface impoundments (sludge lagoons) that received wastewater treatment solids and sludges consisting mostly of dissolved air flotation (DAF) unit skimmings, oily water and grit from the oil/water separators, and oil/water emulsions from the cleaning of pollution abatement systems and equipment.

According to the "Final Closure Report for the Sludge Lagoons at the Shaffers Crossing Railyard", closure activities were conducted at the site from 1996 to 1997. This included: treatment of water and emulsified oil using a plate-and-frame filter press; solidification of sludge with boiler fly ash and portland cement; placement of the solidified sludge back into the lagoons; installation of a low-permeability geosynthetic clay liner (GCL) on top of the solidified sludge; placement of 12 inches of clean soil fill and six inches of clean topsoil above the GCL; and establishment of a grass cover at the site.

The closure plan was conditionally approved by DEQ on April 28, 1995, requiring some additional constituents be added to the post closure ground water monitoring near the lagoon site. The approved plan must be followed, but proposals for modifications to the plan may be submitted for approval by the Regional Director.

f. Effluent Monitoring Frequency

Rationale: Permittees are granted a reduction in monitoring frequency based on a history of permit compliance. To remain eligible for the reduction, the permittee should not have violations related to the effluent limits for which reduced frequencies were granted. If permittees fail to maintain the previous level of performance, the baseline monitoring frequencies should be reinstated for those parameters that were previously granted a monitoring frequency reduction.

g. Total Maximum Daily Load (TMDL) Reopener

Rationale: Section 303(d) of the Clean Water Act requires that Total Maximum Daily Loads (TMDLs) be developed for streams listed as impaired. This special condition is to allow the permit to be reopened if necessary to bring it into compliance with any applicable TMDL approved for the receiving stream. The reopener recognizes that, according to Section 402(o)(1) of the Clean Water Act, limits and/or conditions may be either more or less stringent than those contained in this permit. Specifically, they can be relaxed if they are the result of a TMDL, basin plan, or other wasteload allocation prepared under section 303 of the Act.

h. Polychlorinated Biphenyl Compounds Pollutant Minimization Plan

Rationale: State Water Control Law § 62.1-44.21 authorizes the Board to request information needed to determine the discharge's impact on State Waters and Section 303(d) of the Clean Water Act requires that Total Maximum Daily Loads (TMDLs) be developed for streams listed as impaired. Development of a PCB Total Maximum Daily Load (TMDL) requires consideration of the Virginia water quality criterion for Total PCBs (9 VAC 25-260-140) to protect the "fishable" designated use (9 VAC 25-260-10). In addition, the VPDES Permit Regulation, 9 VAC 25-31-220 K, requires the use of best management practices (BMPs) where applicable to control or abate the discharge of pollutants where numeric limitations are infeasible, or the practices are necessary to achieve effluent limitations or to carry out the purposes and intent of the State Water Control Law and the Clean Water Act. This special condition requires the development of a Pollutant Minimization Plan (PMP) to reduce PCBs in the discharge to come into compliance with the Water Quality Standards or an approved TMDL. The approved Roanoke River PCB TMDL allocates 35.6 mg/year to this facility. Dry and wet weather PCB Monitoring was performed during the last permit term. All of the information required by DEQ Guidance has yet to be submitted with the data; therefore, only a qualitative evaluation of the data has been performed by TMDL staff. The dry data (Outfall 002) appears to be below the human health water quality criterion of 640 pg/l, while the wet weather data appears to exceed the criterion. In accordance with agency guidance, a PMP is required if the sampling results indicate a reasonable potential to exceed the water quality criterion. The contents of the PMP should follow the outline presented in Attachment C of this Fact Sheet.

i. Storm Water Management

Rationale: VPDES Permit Regulation 9 VAC 25-31-10 defines discharges of storm water from industrial activity in nine industrial categories. 9 VAC 25-31-120 requires a permit for these discharges. The Storm Water Pollution Plan requirements of the permit are derived from the VPDES general permit for discharges of storm water associated with industrial activity, 9 VAC 25-151-10 et seq. VPDES Permit Regulation, 9 VAC 25-31-220 K, requires the use of best management practices where applicable to control or abate the discharge of pollutants when numeric effluent limitations are infeasible or the practices are necessary to achieve effluent limit or to carry out the purpose and intent of the Clean Water Act and State Water Control Law.

The storm water management requirements of the permit are divided into four sections: Storm Water Management Evaluation, General Storm Water Special Conditions, General Storm Water Pollution Prevention Plan Requirements, and Sector-Specific Storm Water Pollution Prevention Plan Requirements.

j. Part II, Conditions Applicable to All Permits

Rationale: VPDES Permit Regulation, 9 VAC 25-31-190 requires all VPDES permits to contain or specifically cite the conditions listed.

NPDES Permit Rating Work Sheet: Total S	score 20	
---	----------	--

Please see **Attachment A** for completed rating work sheet. There have been no changes since the last permit reissuance.

21. Changes to Permit:

Changes in Effluent Monitoring/Limitations:

Outfall No.	Parameter Changed	Monitorin Requirem Changed	quirement Changed			Reason	Date
	*	From	То	From	То	*	
002	Oil & Grease	1/month	1/3M			reduced monitoring granted based on past performance	7/16/15
002	Total Suspended Solids (TSS) and Total Organic Carbon (TOC)	1/month	1/6M			reduced monitoring granted based on past performance	7/16/15
902 and 005	Total Petroleum Hydrocarbons (TPH), pH, Nitrite + Nitrate	1/year	1/6M			VPDES General Industrial SW permit requires semiannual monitoring	7/16/15
004	Total Petroleum Hydrocarbons (TPH)	1/year	1/year 1/6M			VPDES General Industrial SW permit required semiannual monitoring	7/16/15

Changes to Special Conditions:

O&M Manual – updated to reflect current language

Compliance Reporting – Updated to reflect current language; provides permittee with quantification levels and reporting requirements.

Sampling for Fulfill Form 2F Requirements – Removed. A completed Form 2F was submitted for all storm water outfalls.

Effluent Monitoring Frequencies – Added to provide instructions regarding reduced monitoring frequencies

PCB PMP Plan – The monitoring condition was replaced with the requirement for a Pollutant Minimization Plan because the facility has a PCB allocation in the approved TMDL and data show a reasonable potential to exceed the water quality criteria or wasteload allocation.

Storm Water Management – Update to reflect current language as found in the VPDES General Permit for Storm Water Discharges. Also added Storm Water Management Evaluation language to provide comparative values for review of SWPPP.

22. Variances/Alternate Limits or Conditions:

The facility requested and was granted a waiver for application monitoring for BOD, COD and ammonia at outfall 002. There is no source of these pollutants in the discharge and therefore, the pollutants are not of material concern. Historic data is available on file at the Regional Office.

The facility was found to be eligible for reduced monitoring frequencies based upon past performance. These reduced frequencies are incorporated on the Effluent Limitations page for Outfall 002. A special condition is included to return to the previous frequencies should a violation occur.

23. Public Notice Information required by 9 VAC 25-31-280 B:

All pertinent information is on file and may be inspected or copied by contacting Lynn V. Wise at:

Virginia DEQ, Blue Ridge Regional Office 3019 Peters Creek Road Roanoke, VA 24019 Telephone No. (540) 562-6787 E-mail lynn.wise@deq.virginia.gov

Persons may comment in writing or by email to the DEQ on the proposed permit action, and may request a public hearing during the comment period. Comments shall include the name, address, and telephone number of the writer and of all persons represented by the commenter/requester, and shall contain a complete, concise statement of the factual basis for comments. Only those comments received within this period will be considered. The DEQ may decide to hold a public hearing, including another comment period, if public response is significant and there are substantial, disputed issues relevant to the permit. Requests for public hearings shall state 1) the reason why a hearing is requested; 2) a brief, informal statement regarding the nature and extent of the interest of the requester or of those represented by the requester, including how and to what extent such interest would be directly and adversely affected by the permit; and 3) specific references, where possible, to terms and conditions of the permit with suggested revisions.

Following the comment period, the Board will make a determination regarding the proposed permit action. This determination will become effective, unless the DEQ grants a public hearing. Due notice of any public hearing will be given. The public may review the draft permit and application at the DEQ Blue Ridge Regional Office in Roanoke by appointment.

24. Additional Comments:

Previous Board Action: None.

Staff Comments:

A screening for Threatened and Endangered (T&E) Species in the vicinity of the Norfolk Southern Shaffers Crossing facility was performed and a T&E Species Coordination Form package was submitted to the Department of Game and Inland Fisheries, the Department of Conservation and Recreation, and the United States Fish & Wildlife Service. The purpose of the screening is to assure that mixing zones do not impact listed species. Because the discharges from this facility are to streams with critical flows equal to zero, no mixing zones are allowed. The federal Species of Concern state Threatened (FSST) orangefin madtom and federal Endangered state Endangered (FESE) Roanoke logperch are known from the area. The Roanoke River is a designated Threatened and Endangered (T&E) species water for these species. Since no mixing zones are allowed and the effluent limitations contained in this permit will maintain the Water Quality Standards of 9 VAC-25-260-00 et seq., no adverse impacts to these species are expected. Further documentation of the T&E species review can be found in the Agency's files at the Regional Office.

The discharge is not controversial and is currently meeting the required effluent limitations. The discharges are in conformance with the existing TMDL planning documents for the area.

24. Additional Comments:

<u>Public Comments</u>: No comments were received during the comment period.

Other Agency Comments: VDH noted that the nearest downstream raw water intake is located approximately 31 miles from the discharge area and that no wells were found within a 1-mile radius from the discharges. EPA had no comments concerning the TMDL requirements.

25. 303(d) Listed Segments (TMDL):

Bacteria - Outfall 002/902 from this facility discharges directly to an unnamed tributary to Lick Run. The 2012 303(d) report lists 9.36 miles of Lick Run as impaired beginning near the Shaffers Crossing rail yard and extending downstream to the mouth of Lick Run on Tinker Creek. The segment is listed as impaired for not supporting recreational use due to exceedances of the *E. coli* bacteria criteria. This segment was initially listed in 1996 and was expanded by 5.01 miles in 2004. EPA approved the Fecal Coliform TMDL for Glade Creek, Tinker Creek, Carvin Creek, Laymantown Creek and Lick Run on August 5, 2004. It does not contain a WLA for this discharge. No limit for fecal coliform/bacteria is included in this permit because the effluent does not contain fecal coliform.

Storm water outfalls 004 and 005 discharge to Horton's Creek, which enters the Roanoke River. This segment of the Roanoke River is listed due to bacteria impairment. EPA approved the Bacteria TMDLs for Wilson Creek, Ore Branch and Roanoke River Watersheds on August 2, 2006. It does not contain a WLA for this facility. No limit for *E. coli*/bacteria is included for these outfalls because the effluent does not contain *E.coli*.

Benthic (Sediment) – The Roanoke River watershed to which this facility discharges is listed on the 2012 303(d) list for a benthic impairment. The Benthic (Sediment) TMDL for the Roanoke River, which was approved on May 10, 2006, contains two allocations for this facility. The wastewater discharge from outfall 002 received an allocation of 1.62 tons/year, consistent with the current effluent limits (30 mg/l monthly average). The storm water discharges from the site received an allocation of 28.83 tons/year. This allocation was based on a benchmark value of 100 mg/l. It is noted that an effluent limit of 60 mg/l maximum is required at outfall 902. Achievement of compliance with the EPA Benchmark value for TSS at the remaining storm water outfalls is expected to maintain compliance with the TMDL allocation.

Polychlorinated Biphenyl Compounds (PCBs) – Tinker Creek and the Roanoke River are listed as impaired on the 2012 303(d) list due to a fish consumption advisory due to PCBs in fish tissue. The PCB TMDL for the Roanoke River, which was approved on April 9, 2010, includes an allocation of 35.6 mg/year for this facility. Monitoring during the past permit term appears to indicate the reasonable potential for the storm water discharges to exceed the human health water quality criterion. Therefore, in accordance with agency guidance, a PCB Pollutant Minimization Plan is being required by this permit with a goal of identifying and reducing potential sources of PCBs in the discharges. The requirements of the PCB PMP are included in Attachment C.

Additional details regarding the impairments can be found in the 2012 Water Quality Assessment & 303(d) Impaired Waters Fact Sheets for these segments in **Attachment B**.

ATTACHMENT A GENERAL FACILITY INFORMATION

- Process Flow Diagram
 Storm Water Drainage Area Map
- 3. Site Visit Memo
- 4. Significant Materials Stored
- 5. Location Topographic Map6. NPDES Permit Rating Worksheet

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Blue Ridge Regional Office, Water Division

3019 Peters Creek Road

Roanoke, VA 24019

SUBJECT:

Site Visit – Norfolk Southern Shaffers Crossing

VPDES Permit No. VA0001597

TO:

File

FROM:

Lynn V. Wise, Environmental Engineer, Sr.

DATE:

July 9, 2015

COPIES:

A site visit was conducted at the referenced facility on July 8, 2015, for the purpose of permit reissuance. Present representing Norfolk Southern were: Mr. Troy Carpenter, Regional Manager, Environmental Operations; Ms. Ava Ray, Mechanical Supervisor; and Mr. Mark Neal, Environmental Compliance Manager, Cardno.

The Shaffers Crossing facility is a locomotive and car repair shop and refueling facility owned and operated by Norfolk Southern Railway. It operates 24 hours per day, seven days per week. Wastewater that discharged through former outfalls 001 and 003 has been routed to the sanitary sewer. Storm water and ground water from the owner's property which is leased for a scrap yard by Progress Rail Services still discharges to outfall 003 and is covered by the General Permit for Discharges of Storm Water Associated with Industrial Activity (VAR050522). Although previously reported as being routed to the sanitary sewer, it was discovered during the last permit reissuance process that storm water is still discharged through outfall 004. Storm water is also discharged through outfalls 005 and 902. The majority of the storm water from the areas most likely to be contaminated is routed to the wastewater treatment plant prior to discharge to the sanitary sewer. Cardno (formerly Marshall Miller and Associates) samples the outfalls for DMR reporting and the permit application.

VPDES Permit No. VA0001597 authorizes discharges from outfalls 002/902, 004, and 005. Each of these discharges is discussed below.

Outfall 002/902

Dry weather discharges to 002 include ground water sump discharges from the car repair shop and hopper car wash facility as well as hump compressor blow down and condensate (which were not listed on the permit application). Wastewater from the hopper car wash facility is pre-treated at the hopper car wash building prior to being routed to the DAF/pretreatment plant and on to the sanitary sewer. Compressor blowdown and condensate is collected and treated through a Beko unit. This unit, which was put into service around October 2009, was installed mainly for copper removal due to compliance difficulties at outfall 002. First the water passes through an oil/water separator, then polymer is added and the water passes through two fleece filter bags. The filters are replaced approximately once per month depending on the season. The treated compressor condensate combines with the other flows prior to final treatment and discharge at outfall 002. The final treatment is discussed below.

Storm water associated with industrial activity is also discharged through outfall 002 (designated as 902 in the VPDES permit). Storm drains collect water from around the car repair shop, the hopper car wash facility, the house air compressor building, a turntable, and drop inlets leading to Oil/Water Separator #4 (Summers Separator). Before cement cars are washed, dried cement is broken off of the cars with a pneumatic hammer. Waste cement is carried by covered conveyor to a covered roll off container which is emptied by a contractor (currently Waste Management) and disposed of in a landfill. Waste from cleaning out all other kinds of hopper cars is also collected by Waste Management for disposal. This area and the area around the repair shop are swept daily. Parts for the hopper cars are stored in the area between the buildings and minor repairs are performed in outside areas. No evidence of oil leaks was observed.

Treatment of the aforementioned wastewaters is performed via an 8x8x8 ft grit chamber and an oil/water separator. Waste oil is pumped into an adjacent waste oil tank weekly. Grit in each unit is cleaned out twice a year. Water discharged from the separator flows through a v-notch weir into a distribution box. A bypass line connecting the inlet box and the distribution box (by-passing the oil/water separator) is plugged on the exit end. The unnamed tributary to Lick Run was dry. Sampling for outfall 002 is performed at the exit of the oil/water separator, while storm event sampling (902) is performed in the distribution box.

Outfall 004

At one time, it was erroneously indicated that this outfall had been connected to the sanitary sewer. However, this outfall receives storm water from the area around the storm water storage tanks and from the roof drains of three buildings in the area: the "mod" building (previously called the new expedite building), the oil/test lab, and the women's locker room. The discharge is to Horton's Creek.

Outfall 005

Storm drains collecting water from between the transfer table and the wheel truing building and from the locomotive maintenance facility roof drains discharge through outfall 005. A large portion of this drainage area is from parking areas and site roadways. All storm water from the apron and turntable is routed to the sanitary sewer. The outfall discharges to Horton's Creek. Dry weather discharge from this pipe occurs due to ground water infiltration into the pipeline. A previous permit required a dry weather sample of this discharge to verify this assertion.

Wastewater Treatment Plant

Hopper car wash water, locomotive wash water, house air compressor blowdown and condensate, water discharged from various oil/water separators including storm water from the engine fueling area, apron and main turntable areas are treated at the wastewater treatment plant prior to discharge to the sanitary sewer. The water is pumped to a grit chamber followed by an oil/water separator and a dissolved air flotation (DAF) unit. Three polymers, stored in 1600 gallon tanks, are injected into the wastewater prior to the DAF (836A, 509, and 607). The effluent from the DAF is routed to the sanitary sewer. Waste oil is skimmed off of the oil/water separator and stored in a nearby tank. (Used oil is transported off-site by Spirit Services.) Sludge from the top of the DAF is stored in a 1000-gal tank just outside the DAF building. Water can be pumped to the treatment system at a maximum rate of 360 gpm. Should the capacity of the treatment system be exceeded (e.g. during a heavy storm event), the oil/water separator is valved off and a lift station pumps the water to two storm water holding tanks. As the flows decrease, the stored water is fed to the treatment system.

Site Visit Report – Shaffers Crossing Page 3

Sludge Treatment Facility

Sludges collected from all of the grit chambers and oil/water separators are treated onsite and disposed of by a contractor (currently Domermuth Environmental Services). The sludges are collected by truck and hauled to the sludge bay, which is a 12 foot deep pit. On a daily basis, approximately 3500 gallons of sludge is pumped inside the sludge treatment facility, treated with polymer, and placed on sand drying beds for one week to one month. The dried sludge is manually shoveled onto a conveyor that transports the sludge outside to a front end loader. It is then loaded into a hopper. When full, a contract service removes the sludge. The liquid that drains off the drying beds is routed back to the pretreatment system for treatment prior to discharge into the sanitary sewer.

General

Commercial herbicides are applied by a contract operation two times per year on gravel and paved areas. No herbicides are stored on-site.

ABOVEGROUND STORAGE CONTAINERS*

Drainage Flow (See Sire Maps)	Drainage is routed to Oil/Water Separator #2.	Secondary containment structure would drain to ground surface. Flow is then to the south.								
Secondary Containment Type	Oil House Basement (Concrete)	Oil House Basement (Concrete)	Oil House Basement (Concrete)	Oil House Basement (Concrete)	Oil House Basement	Oil House Basement (Concrete)	Oil House Basement (Concrete)	Oil House Basement	Oil House Basement (Concrete)	Tent Tank
Department	Mechanical									
Supporting Structure	Concrete	Steel								
Horizontal/ Vertical H/V	Н	Н	н	н	Н	Н	Н	н	Н	н
Contents	Used Oil	Used Oil	Lube Oil	Lube Oil	Kerosene	Lube Oil	Lube Oil	Lube Oil	Lube Oil	Journal Oil
Capacity (gal)	10,000	10,000	7,000	7,000	3,000	7,000	7,000	7,000	7,000	8,000
Container	IL	2L	3L	4I.	SL	79	7.	8F	J6	10L

ABOVEGROUND STORAGE CONTAINERS* (Continued)

	Marian Assessment													
	Drainage Flow (See Site Maps)	Secondary containment structure would drain to ground surface. Flow is then to the	Secondary containment structure would drain to ground surface. Flow is then to the soot	Drainage is routed to Oil/Water Separator #3.	Secondary containment structure would drain to ground surface. Flow is then to the court.	Secondary containment structure would drain to ground surface. Flow is then to the	Southwest.	Drainage is routed to Oil/Water Separator #1.	NA	Secondary containment structure would drain	to ground surface. Flow is then to the west. Secondary containment structure would drain	to ground surface. Flow is then to the west.	Secondary containment structure would drain	to ground surface. Flow is then to the west. Secondary containment structure would drain to ground surface.
	Secondary Containment Type	Geomembrane Lined Concrete Dike	Geomembrane Lined Earthen Dike	Drains to OWS	Tent Tank	Geomembrane Lined Concrete Dike	Mobile	Drains to OWS	Mobile	Tent Tank	Tent Tank	Drains to OWS	Concrete Dike	Concrete Dike
Continued	Department	Mechanical	Mechanical	Mechanical	Mechanical	Mechanical	Mechanical	Mechanical	Mechanical	Mechanical	Mechanical	Mechanical	Mechanical	Mechanical
ر	Supporting Structure	Concrete	Concrete	Concrete	Steel	Concrete	Steel	Concrete	Concrete	Steel	Steel	Concrete	Concrete	Concrete
	Horizontal/ Vertical IH/V	н	>	Н	Н	Н	H	^	H	Н	Н	H	Н	Н
AND DESCRIPTION OF THE PROPERTY OF THE PROPERT	Contents	Lube Oil	Diesel Fuel	Compressor Oil	Sludge	Lube Oil	Kerosene	Compressor Oil	Car Oil	Hydraulic Oil	Hydraulic Oil	Lube Oil	Car Oil	Fuel Additive
STATISTICAL PROPERTY OF STATISTICS AND STATISTICS A	Capacity (gal)	10,000	741,000	1,000	8,000	10,000	275	550	275	300	300	275	1,000	10,000
STATE OF THE PARTY	Container	12L	14L	16L	17L	18L	19L	23L	24L	30L	31L	32L	36L	37L

ABOVEGROUND STORAGE CONTAINERS* (Continued)

Container Caponents Contents Content	ACTION AND COMPANY CARD COMPANY	Children in the second department in the second	The second secon			Communal		
500 Gasoline H Steel Mechanical Tent Tank 1,000 Diesel Fuel H Steel Mechanical Tent Tank 1,000 Used Oil H Steel Mechanical Tent Tank 8,000 Used Oil H Steel Mechanical Tent Tank 3,000 Used Oil H Steel Mechanical Tent Tank 4,000 Diesel H Steel Mechanical Tent Tank 300 Used Oil H Concrete Maintenance Concrete Vault of Concrete Vaul	Container	Capacity (gal)	Company	Horizontal/ Vertical EI/V	Supporting Structure	Department	Secondary Containment Type	Drainage Flow (See Site Maps)
1,000 Diesel Fuel H Steel Mechanical Tent Tank 1,000 Used Oil H Steel Mechanical Tent Tank 8,000 Used Oil W Concrete Mechanical Tent Tank 3,000 Used Oil H Steel Mechanical Tent Tank 4,000 Diesel Oil H Steel Mechanical Tent Tank 300 Used Oil H Concrete Maintenance Concrete Vault 550 Used Oil H Concrete Maintenance Concrete Vault -500 Used Oil H Steel Mechanical Tent Tank -800 Used Oil H Steel Mechanical Tent Tank -800 Used Oil H Steel Mechanical Tent Tank -800 Various NA NA Various Drainage -700 Dielectric NA NA Various NA	39L	200	Gasoline	Н	Steel	Mechanical	Tent Tank	Secondary containment structure would drain to ground surface. Flow is then to the northeast.
1,000Used OilHSteelMechanicalTent Tank8,000Used OilHSteelMechanicalTent Tank3,000Used OilHSteelMechanicalTent Tank4,000DieselHSteelMechanicalTent Tank300Used OilHConcreteMaintenanceConcrete Vault550Diesel FuelHConcreteMaintenanceConcrete Vault550Used OilHSteelMechanicalTent Tank500Used OilHSteelMechanicalTent Tank~880VariousNANAVariousDrainage~700DielectricNANAVariousNAFluidNANAVariousNA	42L	1,000	Diesel Fuel	Н	Steel	Mechanical	Tent Tank	Secondary containment structure would drain to ground surface. Flow is then to the northeast.
8,000Used OilHSteelMechanicalTent Tank3,000Used OilVConcreteMechanicalDouble Walled4,000DieselHSteelMechanicalTent Tank300Used OilHConcreteMaintenanceConcrete Walls550Diesel FuelHConcreteMaintenanceConcrete Vault-of-WayHConcrete Vault-of-Way500Used OilHSteelMechanicalTent Tank~880VariousNANAVariousDrainage~700DielectricNANAVariousNAFluidNANAVariousNA	43L	1,000	Used Oil	Н	Steel	Mechanical	Tent Tank	Secondary containment structure would drain to ground surface. Flow is then to the south.
3,000Used OilVConcreteMechanicalDouble Walled4,000DieselHSteelMechanicalTent Tank4,000Diesel FuelHSteelMechanicalConcrete Walls300Used OilHConcreteMaintenanceConcrete Vault550Diesel FuelHConcreteMaintenanceConcrete Vault~880VariousNANAVariousControlled Drainage~700DielectricNANAVariousNAFluidNANAVariousNA	44L	8,000	Used Oil	Н	Steel	Mechanical	Tent Tank	Secondary containment structure would drain to ground surface. Flow is then to the west
500Used OilHSteelMechanicalTent Tank4,000DieselHSteelMechanicalConcrete Walls300Used OilHConcreteMaintenance -of-WayConcrete Vault -of-Way500Used OilHConcreteMaintenance -of-WayConcrete Vault -of-Way~800Used OilHSteelMechanicalTent Tank~80VariousNANAVariousDrainage~700DielectricNANAVariousNA	45L	3,000	Used Oil	Λ	Concrete	Mechanical	Double Walled	Drainage is routed to Oil/Water Senarator #3
4,000Diesel OverflowHSteelMechanicalConcrete Walls300Used OilHConcreteMaintenance -of-WayConcrete Vault -of-Way500Used OilHConcreteMechanicalTent Tank~880VariousNANAVariousDrainage~700DielectricNANAVariousDrainageFluidNANANANA	46L	200	Used Oil	Н	Steel	Mechanical	Tent Tank	Secondary containment structure would drain to ground surface. Flow is then to the
300Used OilHConcrete -of-WayConcrete Vault -of-Way550Diesel FuelHConcrete -of-WayConcrete Vault -of-Way500Used OilHSteelMechanicalTent Tank~880VariousNANAVariousControlled Drainage~700DielectricNANAVariousDrainageFluidNANAVariousNA	47L	4,000	Diesel Overflow	Н	Steel	Mechanical	Concrete Walls	Secondary containment structure would drain
550Diesel FuelHConcreteMaintenance -of-WayConcrete Vault -of-Way500Used OilHSteelMechanicalTent Tank~880VariousNANAVariousControlled Drainage~700Dielectric 	2MW	300	Used Oil	Н	Concrete	Maintenance -of-Way	Concrete Vault	Drainage is routed to a floor drain which discharges to a 1,000 gallon concrete vault
500Used OilHSteelMechanicalTent Tank~880VariousNANAVariousDrainage~700DielectricNANANANAFluidNANANANA	3MW	250	Diesel Fuel	Н	Concrete	Maintenance -of-Way	Concrete Vault	Drainage is routed to a floor drain which discharges to a 1 000 callon concrete vault
~880 Various NA NA Various Controlled ~700 Dielectric NA NA Various NA NA Various	Unassigned	200	Used Oil	Н	Steel	Mechanical	Tent Tank	Secondary containment would drain to ground surface. Flow is then to the northeast
~700 Dielectric NA NA Various NA	Drums	088~	Various	NA	NA	Various	Controlled Drainage	Drums are placed in areas where a release
	Transformers	~700	Dielectric Fluid	NA	NA	Various	NA	A release would pool on nearby ground surface.

Norfolk Southern Railway Company **Shaffer's Crossing**

Topographic Site Location Map

VIRGINIA QUADRANGLE LOCATION

NS1789-108 02/02/2015 Bluefield, Virginia

PDES Permit Rating Work Sheet

NPDES NO: 1	14000	1 5	<u>'-</u> 7						Discre Score	ar Additio etionary Ac change, I change on	idition
NORF	OILKI	Sp	UITI	HERM	NI RIA	11/4	WAY G	01 15	HA	FIFIE	RIS
city: R1019						_ _	i				
Receiveing Water	HORE	101	J _S	BIRIA	4NICHI		10 TT 11 12	11101	<u> </u>	10 12	
Reach Number:					*					ž.	
Is this facility a swith one or more 1. Power output 2. A nuclear pow 3. Cooling water	of the following 500 MW or greate er plant discharge greate	charac er (not us r than 25	teristics? sing a co	oling pond/lak		v rate	Is this permit for serving a popular YES; score in NO (continu	ation greatis 700 (sto	ter than		sewer
YES: score is	600 (stop here)	_	NO (COI	illilue)							
FACTOR 1: T	oxic Pollutar	it Pote	ntial								
PCS SIC Code:		_	Primar	y SIC Code:	401						
Other SIC Cedes:											
Industrial Subcateg	ory Code:		(Code	000 if no sub	category)		•		· 9:		
Determine the To.	xicity potential i	rom App	endix A	. Be sure to	use the TOTA	L toxicity	potential column	and chec	k ane		
Toxicity Group	Code Points	5	Toxi	city Group	Code Poi	nts	Toxicity Gra	up	Code	Points	
X No process		•		3.	3 1		7.		7	35	
waste stream	s 0 0 1 5			4. 5.	4 2 5 2		d.	** _{1,*}	9	40 45	
2.	2 10			6.	6 3	D	10.		10 .	50	
				u.			Code Numi	har Chack	~d. [ı (Öı	
						*		ints Factor		O_1	
	*						, , , , ,		•• 1		
FACTOR 2: FI	ow/Stream F	low Vo	lume	Complete Ei	ther Section A	or Sectio	n B; check only	one)			
Section A-Wastew	ater Flow Only C	onsidere	d		Section B-	Wastewate	er and Stream Flow	Consider	ed		
• • • • • • • • • • • • • • • • • • • •	5 MGD to 10 MGD		11 12	Points 0 10	Wastewater (See Instruc		Percent of Instreat Wastewater Conditration at Receive Stream Low Flow	cen- eing	Code	Points	
	10 to 50 MGD 50 MGD		13 14	20 30	Type I/III:		< 10%		41	0	
Type II: Flow <	1 MGD	X	21	10			≥ 10% to < 50%	-	42	10	*
Flow 1	to 5 MGD 5 to 10 MGD	_	22 23	20 30	5.		≥ 50%		43	20	
	10 MGD	_	24	50	Type II:		<10%		51	0	
Type III: Flow <			31	0	.,		≥ 10% to < 50%		52	20	
Flow >	to 5 MGD 5 to 10 MGD	_	32 33	10 20							
Flow >	10 MGD		34	30			<u>></u> 50%	_	53	30	
						Code (Checked from Sec Total Poir	ction A or		<u>L</u> 1	:

NP 'S Permit Rating Work Sheet

	v		NPDE	S No.:]	VAI	OO	00101	
FACTOR 3: Conventional	Pollutants			•				
(only when limited by the permit)								
	ore on a							
A. Oxygen Demanding Pollutant:	(check one)	BOD	COD		Other:			
	,				Code	Points		
Permit Limits: (check one)	*	< 100 lbs/day			1			
Permit Limits. (check one)		100 to 1000 lbs/da	ıv		2	0 5	MA	
		>1000 to 3000 lbs.			3	15		
		>3000 lbs/day			4	20		
•	•					¥		
							Cada Chaste	d. 1 1
*							Code Checke	d: NA
			*				Points Scored:	
*		5		200			¥	7/#F
B. Total Suspended Solids (TSS)								
							•	
	./				Code	Points		
Permit Limits: (check one)	X	< 100 lbs/day			1	0.		
		100 to 1000 lbs/day			2 3	5 15		
		>5000 lbs/day	uay		4	20		
		- 3000 ibs/day			- 4			
×								
							Code Checker	d: /
							Points Scored:	10i
			* 7					——l——l
	,							
2 Alterna Dellutanti Johanis ana)	Ammo	nia Other:						
C. Nitrogen Pollutant: (check one)	Animo	ma omer.	-					
					Code	Points		
Permit Limits: (check one)	<	300 lbs/day			. 1	0	1.1	
-		300 to 1000 lbs/day			2	5	MA	
		>1000 to 3000 lbs/d	iay .		3	15		
		>3000 lbs/day			4	20		
							Code Checked	i: NA
								. 1—170 /4
							Points Scored:	
						Total	Points Factor 3: _	
							* v	
FACTOR 4: Public Health In	mpact				•••			
s there a public drinking water sup	oply located	within 50 miles do	wnstreal	n of the e	Muent dis	charge	(tnis includes any l	ody of
vater to which the receiving water nethods of conveyance that ultima	r is a tributai	ry)? A public arin	roforono	iter supply	may inc	iuae ini	miration galleries, c	r otner
nethods of conveyance that ultima	ately get wat	el Ilolli the above	n elerenc	r supply.	•			
YES (if yes, check toxicity potent	fial number be	elow) High	n Porm	1	÷			
NO (if no, go to Factor 5)	uu number bi	0						
		an ang Pranchiga tao yan tao yan tao ay an ang an ang unang manganan ang ang disupan yang ang m		**********			The second secon	
etermine the human health toxicit	y potential fr	om Appendix A. U	se the s	ame SIC c	ode and s	ubcateg	gory reference as in	Factor
. (Be sure to use the human heal	th toxicity gr	oup column - che	ck one i	oelow)				
	-	evicity Group	Code	Dointe	Ψ.	oxicity (Group Cod	e Points
oxicity Group Code Points	To	oxicity Group	Code	TOINES	10	oxidity (. COU	e Fullis
No process		3.	3	0		7.	7	15
waste streams 0 0	-	4.	4	0		_ 8.	8	20
1. 1 0	<u> </u>	5.	5	5	_	9.	9	25
		6.	6	10	_	10.	, 10	30
		*						
2						O-41- 11	umbar Chasterde I	10
					(Lode Ni	umber Checked: _	
						Total	Points Factor 4: _	

N: ES Permit Rating Work Sheet

NPDES No.: VIA 1000 1597

FACTOR 5: Water Quality Factors

A. Is (or will) one or more of the effluent discharge limits based on water quality factors of the receiving stream (rather than technology-based federal effluent guidelines, or technology-based state effluent guidelines), or has a wasteload allocation been assigned to the discharge?

Yes 1 10 No 2 0

B. Is the receiving water in compliance with applicable water quality statndards for pollutants that are water quality limited in the permit?

Yes 1 0
No 2 5

fecal impaired

C. Does the effluent discharged from this facility exhibit the reasonable potential to violate water quality standards due to whole effluent toxicity?

Yes 1 10
No 2 0

FACTOR 6: Proximity to Near Coastal Waters

A. Base Score: Enter flow code here (from Factor 2): | 2 1

Enter the mulltiplication factor that corresponds to the flow code: |___|

Check appropriate facility HPRI Code (from PCS):

	HPRI #	Code	HPRI Score	Flow Code Mul	tiplication	Factor
	1	1	20	11, 31, or 41 12, 32, or 42	0.00 0.05	
	2	2	0	13, 33, or 43 14 or 34	0.10 0.15	
	3	3	30	21 or 51 22 or 52	0.10 0.30	
\checkmark	4	4	0	23 or 53 24	0.60	
	5	5	20			

HPRI code checked: |___|

Base Score: (HPRI Score) _____ x (Multiplication Factor) _____ = ____ (TOTAL POINTS

B. Additional Points—NEP Program
For a facility that has an HPRI code of 3, does the facility
discharge to one of the estuaries enrolled in the National
Estuary Protection (NEP) program (see instructions) or
the Chesapeake Bay?

C. Additional Points—Great Lakes Area of Concern For a facility that has an HPRI code of 5, does the facility discharge any of the pollutants of concern into one of the Great Lakes' 31 areas of concern (see instructions)

 Code
 Points

 _____ Yes
 1
 10

 _____ No
 2
 0

Yes 1 10
No 2 0

Code Number Checked:

NF S Permit Rating Work Sheet

NPDES.NO: NA 0001597

SCOR	E SUIVINIA	AKT .	_	
	Factor	Description		Total Points
	1	Toxic Pollutant Potential		

2 Flow/Stream Flow Volume Conventional Pollutants

4 Public Health Impacts

5 Water Quality Factors

6 Proximity to Near Coastal Waters

73

		тот	AL (Factors 1-6)	. 20	<u>.</u>		
S1.	Is the to	etal score equal	to or greater than 80?	Yes (Facility is a maj	ior) No	7 H	£5.
S2.	If the a	nswer to the abo	ve question is no, would yo	ou like this facility to be d	liscretionary major?	ч	<u> p</u>
			oints to the above score ar	nd provide reason below:			# **:
		Reason:					
		NEW SCORE:	20				

Lewis JPillis

Permit Reviewer's Name

540, 562.6789

Phone Number

4-18-00

Date

OLD SCORE:

ATTACHMENT B RECEIVING STREAM INFORMATION

- Flow Frequency Memo
 4ALCK000.38 Ambient Data
- 3. 4ALCK002.17 Ambient Data
- 4. 4AROA202.20 Ambient Data
- 5. WQ Assessment and Impaired Waters Fact Sheets
 6. Excerpts from Applicable TMDLs
 7. Significant Spills & Leaks

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Office of Water Quality Assessments

P.O. Box 10009 Richmond, Virginia 23219 629 East Main Street

SUBJECT: Flow Frequency Determination

Norfolk Southern RR, Shafers Crossing - #VA0001597

TO:

Lewis Pillis WCRO

FROM:

Paul E. Herman, P.E., WQAP

RECEIVED

DATE:

May 24, 1999

MAY 25 1299

COPIES:

Ron Gregory, Charles Martin, File

This memo supersedes my July 28, 1994, memo to you concerning the subject VPDES permit.

The Norfolk Southern RR -Shafers Crossing discharges via several outfalls located on the Hortons Branch (001, 004, and 005), North Fork Lick Run (002), an unnamed tributary (006), and the Roanoke River (003), in Roanoke, Virginia. Stream flow frequencies are required at these sites for use by the permit writer in developing the VPDES permit.

The Hortons Branch, North Fork Lick Run and the unnamed tributary are not shown on the USGS Roanoke Quadrangle topographic map as streams, intermittent or otherwise. The map indicates these disharge receiving streams may be unnamed drainage ditches or storm sewers. The flow frequencies for storm sewers or drainage ditches are 0.0 cfs for the 1Q10, 7Q10, 30Q5, high flow 1Q10, high flow7Q10, and harmonic mean. The storm drains probably discharge to the Roanoke River in the vicinity of outfall 003. The flow frequencies for the Roanoke River are presented below for outfall 003.

The USGS has operated a continuous record gage on the Roanoke River at Roanoke, VA (#02076000) since 1899. The gage is located 3.0 miles downstream of the discharge point. The flow frequencies for the gage are based on the unregulated period of record from 1950 to 1993. Prior to 1950, flows were regulated by power plants upstream. Since 1994, flow has been regulated by withdrawals by Roanoke County for public use. The flow frequencies for the discharge point were determined using drainage area proportions and do not address any withdrawals, discharges, or springs that may lie between the gage and outfall 003. The flow frequencies for the gage and the discharge point are presented below.

Roanoke River at Roanoke, VA (#02055000):

Drainage Area = 395 mi²

1010 = 33 cfsHigh Flow 1Q10 = 68 cfs 7Q10 = 37 cfsHigh Flow 7Q10 = 81 cfsHM = 148 cfs

30Q5 = 53 cfs

Roanoke River at Shafers Crossing outfall 003:

Drainage Area = 383.82 mi²

High Flow 1010 = 66 cfs 1010 = 32 cfsHigh Flow 7010 = 79 cfs 7010 = 36 cfsHM = 144 cfs3005 = 51 cfs

The high flow months are January through May. If you have any questions concerning this analysis, please let me know.

0061 Ammor	0.012 0.012 0.014	0.37	0.1	0.12	0.04	0.04	0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05
00600 Nitrogen, Tot					2.82	2.62	2.11 2.55 2.55 2.55 2.55 2.55 2.00 2.00 2.00
00540 Residue, Fix Nonfilt		п	30	10			
00535 Residue, Vol Nonfilt		9	10	3 U			
00505 00510 00515 00530 00535 00540 00600 Residue,Tot Vol Residue,Tot Fit Residue,Tot Fit Residue,Tot Nonfit Residue,Vol Nonfit Residue,Fix Nonfit Nitrogen,Tot Month Residue, Nonfit No		17	40	12	3 U	m	0
00515 Residue, Tot Filt	251 278 278 278 269 267 285 285 285 352 352						
00510 Residue, Tot Fix	225 226 226 227 228 228 238 239 239 239 239 239 239 239 239 239 239	2940	155	235			
00505 Residue, Tot Vol	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	128	63	92			
00500 Residue, Tot	286 286 286 269 269 274 274 306 310 310 313 313 313 313 313 314 315 316 317 317 318 318 318 318 318 318 318 318 318 318	3068	218	300			
00410 Alkalinity	165 189 189 173 173 171 171 171 185 185						
00403 pH, lab	7.39 6.79 6.04 6.42 6.43 6.63 6.68 6.68 6.68 6.68						
00310 BOD ₅							
Sp Cond	471 507 196 492 492 470 480 480 480 500 500 605 605 517 517 517 517 517 517 517 517 517 51	5440	301	459			
00076 Turbidity	2.19 4.74 5.1 4.7 4.5 10.3 10.3 11.7 11.7 11.3 11.3 11.3 11.4 11.4 11.4 11.4 11.4						
	8 Field Ph 9 8.7 8.7 8.7 8.8 8.8 8.4 8.5 8.1 9.1 8.2 8.2 8.2 8.2 8.2 8.7 9.1 8.7 7.96 7.9	7.8	7.6	œ	8.2	8.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Do Probe 16.5 8.7 12.5 11.5 11.9 11.9 11.2 14.1 14.1 10.1 10.1 10.2 10.2 9.76 10.1 10.1 10.2 10.3 10.2 9.78	9.6	6.6	9.1	14.8	10.7	14.5 14.5 13.4 13.5 11.1 11.1 11.1 11.1 11.1 12.7 12.7 12.7
	Temp C 23.8 25.5 19 19 15.4 10.6 10.7 13.8 19.7 19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2	6.8	9.3	18.6	22.6	19.9	20.8 10.8 10.8 10.8 25.4 25.4 20.8 11.1 11.5 11.6 11.8 11.8 11.8 11.8 11.8 11.8 11.9 11.9
Station ID 4ALCK000.38	Collection Date Time 07/18/2000 12:00 08/99/2000 12:30 09/13/2000 12:30 11/19/2000 12:30 11/19/2000 12:30 11/19/2000 12:30 12/13/2000 12:30 12/13/2000 13:30 03/19/2001 13:30 06/04/2001 13:30 06/04/2001 13:30 06/04/2001 13:30 06/04/2001 13:30 06/04/2001 13:30 06/04/2001 13:30 06/04/2001 13:30 06/04/2001 13:30 06/04/2001 13:30 06/04/2002 10:00 06/12/2001 13:30 06/04/2002 10:00 06/12/2001 13:30 06/04/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 06/12/2002 10:00 07/12/2002 10:00 06	02/25/2003 14:50 02/27/2003 11:30	03/31/2003 12:10 04/10/2003 10:00 04/29/2003 14:55	05/28/2003 15:30 06/09/2003 11:00	09/20/2003 13:00 07/21/2003 12:30 07/22/2003 14:45	09/09/2003 12:00 09/09/2003 12:00 09/22/2003 11:30	11/0/2020 11:00 11/0/2020 12:00 03/17/2004 12:30 03/17/2004 12:30 05/10/2004 13:30 09/13/2004 13:30 09/13/2004 13:30 03/22/2005 13:30 03/22/2005 13:30 03/22/2005 13:30 03/22/2005 13:30 03/22/2005 13:30 07/13/2006 12:30 01/13/2006 11:30 01/12/2006 11:30 01/12/2006 11:30 01/12/2006 11:30 01/12/2006 11:30 01/12/2006 13:30 01/12/2006 13:30 01/12/2006 13:30 01/12/2006 13:30 01/12/2006 13:30 01/12/2007 15:30 01/12/2007 15:30 01/12/2007 11:30 01/12/2007 11:30 01/12/2007 11:30 01/12/2008 11:30 01/12/2008 11:30 01/12/2008 11:30 01/12/2008 11:30 01/12/2008 11:30 01/12/2008 11:30

32219 Pheophytin Ratio	Bef/Aft Acid 1.452 2.469 1.391 1.53 1.53 1.53								
32218 Pheophytin-A ug/l	(Spec Acid) 0.69 0.5 U 0.5 U 0.5 U 1.18 6.68 0.5 U								
31649 32210 32211 32212 32214 32218 Enterococci Chlorophyll-A Chlorophyll-A Chlorophyll-B Chlorophyll-C T Pheophytin-A n/100ml ug/l ug/l ug/l ug/l ug/l	(Tri Unc.) 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U								
32212 : Chlorophyll-B · ug/l	0.5 U								
32211 Chlorophyll-A : ug/l	(Spec Arid) 1.26 0.64 0.84 0.5 U 0.71 3.72 5.55 3.28								
32210 Chlorophyll-A ug/l	(Tri Unc.) 1.752 0.609 0.6 0.511 0.515 4.258 9.768 3.413								
31649 Enterococci n/100ml	510 800 L 60	1 008	300 L	800 L	009	620	150		
31648 E. Coli n/100ml	600 750 170 330	3000 320	8888	470 800 L	110 180 46	280 170 720	150 100 25 U 350	2000 L 2000 L 200	320
31616 Fecal Col n/100ml	4100 200 5700 100 U 2800 400 5100 100 U 600 2900 2900 200 100 300 420	6400 2800	430	4400	680	5400	310	720 120 50 120 350 350 700 25 U 25 U 25 U 25 U 320 550 550 530 380 380 380 380 380 1200 1600	
31615 Fecal Col MPN	3500 9200 1100	1100	16000	1300	9200	1700	330		
00945 Sulfate mg/l as SO ₄	33 34.3 14.5 29.6 29.6 31.8 29.8 33.6 33.1 39.1								
00940 Chloride mg/l	29.8 35.20.7 27.26.3 26.3 26.3 28.5 31.6 35.9 36.9								
00900 Hardness mg/l as CaCO ₃	195 74.2 206 206 200 200 204 217 217 224 224 224 224 226 202 202 202 202 202 203 203 204 219 219 219 221 222 223 223 223 224 224 224 225 226 227 227 227 227 227 227 227 227 227	24	103	155					
00665 hosphorus mg/l as P	0.05 0.05 0.05 0.03 0.04 0.09 0.09 0.09 0.09 0.09 0.09 0.09	0.09	0.08	0.07	0.05	90.0	0.07	0.13 0.09 0.10 0.11 0.12 0.13 0.13 0.14 0.15 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.10
00630 00665 NO2+NO3 Phosphorus mg/l as N mg/l as P					2.69	2.3	1.75	2.05 2.48 2.44 2.44 2.27 2.27 2.27 2.27 2.27 2.27	
00625 TKN mg/l as N	002 002 003 004 004 004 005 005 005 005 005 005 005	8.0	0.5	9.0					
00620 NITRATE NI Value m	1.178 0.75 1.78 1.67 1.67 1.67 1.75 2.22 2.22 2.22 2.22 2.24 1.88 1.88 1.88 1.88 1.09 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.37	1.18	2.02					
00615 Nitrite-N mg/l as N	0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.02	0.02	0.07					
lo lia-N si N	o oooo oooooo oo				ח	Þ	22	222 22 2222	
Station ID 4ALCK000.38	Oulscoon Date Inne 07/18/2000 12:00 09/19/2000 12:30 09/13/2000 12:30 11/09/2000 12:30 11/09/2000 12:30 01/18/2001 12:30 02/15/2001 12:30 06/04/2001 12:30 06/04/2001 12:30 06/04/2001 12:30 06/04/2001 12:30 06/04/2001 12:30 06/04/2001 12:30 06/04/2001 12:30 06/04/2001 12:00 06/04/2001 12:00	01/29/2003 14:45 02/25/2003 14:50 02/27/2003 11:30		05/28/2003 15:33 05/28/2003 15:30 06/09/2003 11:00	05/25/2003 15:00 07/21/2003 12:30 07/22/2003 14:45	08/27/2003 12:10 09/09/2003 12:00 09/22/2003 11:30	10/22/2003 11:00 11/05/2003 12:00 01/22/2004 12:30 03/17/2004 12:00 05/10/2004 12:00	05/10/2004 12:00 07/05/2004 13:30 09/13/2004 13:30 01/13/2004 13:30 01/05/2005 13:30 03/22/2005 13:30 03/22/2005 13:30 03/13/2005 11:00 01/13/2005 11:00 01/13/2005 11:00 01/13/2005 11:00 01/13/2005 11:00 01/13/2005 11:00 01/13/2005 11:30 03/13/2007 11:30 03/13/2008 11:30	

PCWLD Proport by Wildlife %		27 23	4	33.6	28	58 95	45	2
PCPET Proport by Pet %		37 26	0	8 17	œ	21 8	33 15	51
PCMAN Proport by Human %		4 £ £ £	0	0 29	21	4.0	0 20	70
PCLVE Proport by Livestock %		33 33 17	96	63	13	17	25	
Pres/Abs of Wildlife Iso			0		-			
PAPET Pres/Abs of Pet Iso			0	0 1	0	10		
PAMAN Pres/Abs of Human Iso		0	0	0 1	1	00		
PALVE Pres/Abs of Livestock Iso			1			10		
ISLTE # of Isolates		24 24 23	24	24	24	24	24 20	20
82079 Turbidity NTU			18	32	16	4. 0	8.7	3.3 1.3 2.3 2.3 2.9 2.0 2.0 2.0 5.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
70507 Phosphorus,Tot Ortho mo/l as P	0.05 0.07 0.07 0.05 0.05 0.05 0.05 0.05		0.05	0.04 Q	0.03			
Station ID 4ALCK000.38	Collection Date Time Or/18/2000 12:00 08/19/2000 12:30 09/19/2000 12:30 09/19/2000 12:30 10/11/2000 12:30 11/10/2000 12:30 12/15/2001 11:30 02/15/2001 12:30 03/19/2001 12:30 06/04/2001 12:30 06/04/2001 12:30 06/04/2001 12:30 06/04/2001 12:30 06/04/2001 12:30 06/04/2001 12:30 06/04/2001 12:30 06/04/2001 12:00 06/04/2002 09:40 06/04/2002 09:40 06/04/2002 09:40 06/04/2002 09:40 12/10/2002 10:05 10/16/2002 10:05 12/10/2002 10:05 12/10/2002 10:05 12/10/2002 10:05 12/10/2002 11:45 12/16/2002 10:05 12/10/2002 11:45	12/17/2002 14:45 01/29/2003 14:45 02/25/2003 14:50	02/27/2003 11:30 03/31/2003 12:10	04/10/2003 10:00 04/29/2003 14:55 05/28/2003 15:30	06/09/2003 11:00 06/26/2003 15:00	07/21/2003 12:30 07/22/2003 14:45 08/27/2003 12:10	09/09/2003 12:00 09/22/2003 11:30 10/22/2003 11:00	11/05/2003 11:00 11/05/2003 11:00 01/22/2004 12:30 05/10/2004 12:00 05/10/2004 12:00 07/06/2004 13:30 07/05/2004 13:30 01/05/2005 13:30 01/05/2005 13:30 01/05/2005 13:30 01/05/2005 13:30 05/04/2005 13:30 05/04/2005 12:30 05/04/2005 12:30 05/04/2005 12:30 01/10/2006 11:00 05/04/2005 11:00 01/10/2006 11:30 05/04/2005 11:30 05/04/2005 11:30 05/04/2005 11:30 05/11/2006 10:30 01/10/2006 11:30 01/10/2006 11:30 01/10/2006 11:30 01/10/2006 11:30 01/10/2006 11:30 01/10/2006 11:30 01/10/2006 11:30 01/10/2006 11:30 01/10/2006 11:30 01/06/2008 11:00 03/05/2008 11:00 05/06/2008 11:00 05/06/2008 11:00 05/06/2008 11:00

00535 t Residue, Vol Nonfilt ma/l	ì	٣	#	3 U	8	5	8												
00530 Residue, Tot Nonfil ma/I	5								m	25	3 0	3 U	11	3 0	9	3 N	3 0	4	4
00510 Residue, Tot Fiy ma/l		201	6	249	788	121	245												
00505 Residue, Tot Vol ma/l	ñ	09	19	88	26	45	69												
00500 Residue, Tot	ñ	261	116	337	864	166	314												
00095 Sp Cond umhos/cm		427	66	570	1560	232	480												
00076 Turbidity FTU		1.7	88.4	2.3															
•	Ь				7.9	&	8.1	8.2	∞	8.3	8.4	8.2	8.2	8.1	8.2	8.2	8.35	8.3	8.3
	Do Probe	10.83	9.47	14.45	10.4	10.1	8.9	9.5	8.7	10.4	13.6	12.1	10.5	9.5	9.3	12	11	11	10.1
	Temp C	23.23	13.3	5.99	4.4	8.8	18	19.6	17.6	20.5	10	10.4	19.9	22.9	18.8	13.1	14.5	12.9	15.9
Station ID 4ALCK002.17				12/10/2002 11:30								03/17/2004 12:30						13:30	05/04/2005 13:00

Mittogen, I of mig/l as N Adminoilar-N mittale-N mittale-N mittale-N mig/l as N mg/l a	Station ID 4ALCK002.17	00540	00900	00610	00615		00625	00030	9900	00600	31615	31616
6 0.04 U 0.01 0.93 0.3 0.04 204 790 69 0.04 0.02 0.24 0.2 0.1 73.7 9200 3 U 0.12 0.02 1.51 0.4 0.01 225 1300 3 U 0.29 0.02 1.82 0.8 0.02 229 3500 3 U 0.08 0.02 1.33 0.9 0.04 73.6 16000 3 U 0.34 0.06 1.33 0.9 0.04 189 1300 2 S28 0.12 1.33 0.9 0.04 189 1300 1 S7 0.04 1.33 0.9 0.04 189 1300 2 S28 0.12 1.73 0.04 1.87 0.02 230 1300 2 S03 0.08 0.12 1.64 0.02 0.03 1.64 0.03 1.64 0.03 2 S02 0.09 0.12 0.12 1.64		Residue, Fix Nonfilt mg/l	Nitrogen, Tot mg/l as N	Ammonia-N mg/l as N	Nitrite-N mg/l as N		TKN mg/l as N	NO2+NO3 mg/l as N	Phosphorus mg/l as P	Hardness mg/l as CaCO3	Fecal Col MPN	Fecal Col n/100ml
6 0.04 U 0.01 0.93 0.3 0.04 204 790 69 0.04 U 0.02 0.24 0.2 0.1 73.7 9200 3 U 0.04 U 0.02 0.24 0.2 0.1 73.7 9200 4 0.29 0.02 1.51 0.4 0.01 225 1300 30 0.08 0.02 0.7 0.3 0.04 73.6 16000 7 0.34 0.06 1.33 0.9 0.04 189 1300 7 2.28 0.19 0.06 1.33 0.9 0.04 189 1300 1.79 0.04 0.04 1.55 0.02 1.56 0.04 45 2.03 0.04 0.04 0.04 0.02 0.04 45 2.02 0.01 0.08 0.08 0.02 0.04 45 2.03 0.06 0.09 0.09 0.09 0.04	Time											
69 0.04 0.02 0.24 0.2 0.1 73.7 9200 3 U 0.12 0.02 1.51 0.4 0.01 225 1300 4 0.29 0.02 1.82 0.8 0.02 229 3500 30 0.08 0.02 0.7 0.3 0.04 73.6 16000 2.32 0.19 0.06 1.33 0.9 0.04 189 1300 2.28 0.12 0.04 1.87 0.02 230 1.79 0.04 1.56 0.02 1.73 0.02 2 0.11 1.73 0.02 1.64 0.02 2.02 0.08 1.64 0.02 0.03 1.84 0.09 1.64 0.03 2.02 0.01 1.67 0.02 2.02 0.15 1.65 0.02 1.9 0.13 1.72 0.02 1.9 0.13 1.72 0.02	:15	9		0.04 U	0.01	0.93	0.3		0.04	204	790	
3 U 0.12 0.02 1.51 0.4 0.01 225 1300 30 0.29 0.02 1.82 0.8 0.02 229 3500 30 0.08 0.02 0.7 0.3 0.04 73.6 16000 7 2.32 0.19 0.06 1.33 0.9 0.02 230 2.28 0.12 0.04 1.87 0.02 230 1.97 0.04 U 1.73 0.02 45 2 0.11 1.73 0.02 45 2.03 0.08 1.64 0.03 2.02 0.05 1.62 0.03 1.84 0.09 1.67 0.02 2.02 0.15 1.67 0.02 2.02 0.15 1.67 0.02 1.97 0.09 1.67 0.02 1.84 0.09 1.67 0.02 2.02 0.15 1.67 0.02 1.65 0.02 1.67 0.02 1.97 0.01 1.67 0.02 1.99 0.15 1.67 0.02 1.60 0.03 1.67 0.04 1.99 0.13 1	:55	69		0.04	0.02	0.24	0.2		0.1	73.7	9200	
4 0.29 0.02 1.82 0.8 0.02 229 3500 30 0.08 0.02 0.7 0.3 0.04 73.6 16000 7 2.32 0.19 0.06 1.33 0.9 0.04 189 1300 2.28 0.12 0.04 1.87 0.02 230 1.97 0.04 U 1.64 0.02 2.03 0.08 1.65 0.03 2.02 0.05 1.64 0.03 1.84 0.09 1.67 0.03 2.02 0.05 1.64 0.03 2.02 0.03 1.67 0.02 2.02 0.03 1.67 0.03 2.02 0.03 1.67 0.02 2.02 0.12 1.67 0.02 2.02 0.12 1.67 0.02 2.02 0.15 1.65 0.02 1.9 0.12 1.67 0.02 1.9 0.15 1.65 0.02 1.65 0.02 1.65 0.02 1.65 0.02 1.65 0.02 1.9 0.15 1.65 0.02 1.9 0.12 <td< td=""><td>1:30</td><td>3 0</td><td></td><td>0.12</td><td>0.02</td><td>1.51</td><td>9.0</td><td></td><td>0.01</td><td>225</td><td>1300</td><td></td></td<>	1:30	3 0		0.12	0.02	1.51	9.0		0.01	225	1300	
30 0.08 0.02 0.7 0.3 0.04 73.6 16000 7 2.32 0.19 0.06 1.33 0.9 0.04 189 1300 2.28 0.12 0.04 0.02 0.02 230 1.79 0.04 0.04 1.73 0.04 45 1.97 0.04 U 1.73 0.02 45 2.03 0.08 1.64 0.03 1.65 0.03 1.84 0.09 1.72 0.04 1.72 0.04 1.9 0.12 1.64 0.03 1.64 0.03 2.02 0.05 1.65 0.03 1.64 0.03 2.02 0.05 1.64 0.03 1.67 0.02 2.02 0.015 1.67 0.02 1.67 0.02 1.9 0.13 1.77 0.02 0.02 1.67 0.02 1.9 0.13 1.77 0.02 0.02 0.02	4:00	4		0.29	0.02	1.82	0.8		0.02	229	3500	
7 2,32 0.34 0.06 1,33 0.9 0.04 189 1300 2,28 0.12 1,87 0.02 230 1,79 0.04 1,56 0.04 45 1,97 0.04 U 1,73 0.02 45 2 0.11 1,64 0.02 45 2,03 0.08 1,65 0.03 1,65 0.03 1,84 0.09 1,72 0.04 1,64 0.03 1,9 0,12 1,64 0.03 1,64 0.03 2,02 0,03 1,64 0.03 1,64 0.03 2,02 0,12 1,64 0.03 1,64 0.03 2,02 0,15 0,03 1,67 0.02 1,9 0,13 1,67 0.02 1,65 0.02 1,9 0,13 1,77 0,02 1,65 0,02 1,9 0,13 1,77 0,02 1,67 0,02 1,9 0,13 1,77 0,02 1,67 0,02 1,9 0,13 1,77 0,02 0,02 1,9 0,13 1,77 0,04 0,02 1,9 0,13	1:00	30		0.08	0.02	0.7	0.3		0.04	73.6	16000	
2.32 0.19 2.04 0.02 3500 2.28 0.12 1.87 0.02 230 1.79 0.04 1.56 0.04 45 1.97 0.04 1.73 0.02 45 2 0.11 1.64 0.02 45 2.03 0.08 1.65 0.03 1.65 0.03 1.84 0.09 1.72 0.04 1.64 0.03 1.9 0.12 1.67 0.02 1.67 0.02 2.02 0.03 1.67 0.02 1.67 0.02 1.9 0.15 1.65 0.02 1.65 0.02 1.9 0.13 1.72 0.02 1.65 0.02 1.9 0.13 1.72 0.02 1.72 0.02	3:30	7		0.34	90.0	1.33	6.0		0.04	189	1300	
2.28 0.12 1.87 0.02 230 1.79 0.04 0 1.56 0.04 45 1.97 0.04 0 1.73 0.02 45 2 0.11 1.64 0.02 60 2.03 0.08 1.65 0.03 1.65 0.03 2.02 0.05 1.62 0.03 1.72 0.04 1.9 0.12 1.64 0.03 1.67 0.02 2.02 0.05 1.67 0.02 1.67 0.02 2.02 0.15 1.65 0.02 1.65 0.02 1.9 0.13 1.72 0.02 1.72 0.02	3:00		2.32	0.19				2.04	0.02		3500	
1.79 0.04 1.56 0.04 45 1.97 0.04 U 1.73 0.02 45 2 0.11 1.64 0.02 60.03 2.02 0.08 1.65 0.03 2.02 0.05 1.62 0.03 1.84 0.09 1.72 0.04 1.9 0.12 1.64 0.03 2.02 0.05 1.67 0.02 2.02 0.15 1.65 0.02 1.9 0.13 1.72 0.02	2:15		2.28	0.12				1.87	0.02		230	
1.97 0.04 U 1.73 0.02 2 0.11 1.64 0.02 2.03 0.08 1.65 0.03 2.02 0.05 1.62 0.03 1.84 0.09 1.72 0.04 1.9 0.12 1.64 0.03 2.02 0.05 1.67 0.02 2.02 0.15 1.65 0.02 1.9 0.13 1.72 0.02	2:30		1.79	0.04				1.56	0.04		45	
2 0.11 1.64 0.02 2.03 0.08 1.65 0.03 2.02 0.05 1.62 0.03 1.84 0.09 1.72 0.04 1.9 0.12 1.64 0.03 2.02 0.09 1.67 0.02 2.02 0.15 1.65 0.02 1.9 0.13 1.72 0.02	3:00		1.97	0.04 U				1.73	0.02			
2.03 0.08 1.65 0.03 2.02 0.05 1.62 0.03 1.84 0.09 1.72 0.04 1.9 0.12 1.64 0.03 2.15 0.09 1.67 0.02 2.02 0.15 1.65 0.02 1.9 0.13 1.72 0.02	2:30		2	0.11				1.64	0.02			
2.02 0.05 1.62 0.03 1.84 0.09 1.72 0.04 1.9 0.12 1.64 0.03 2.15 0.09 1.67 0.02 2.02 0.15 1.65 0.02 1.9 0.13 1.72 0.02	2:30		2.03	0.08				1.65	0.03			
1.84 0.09 1.72 0.04 1.9 0.12 1.64 0.03 2.15 0.09 1.67 0.02 2.02 0.15 1.65 0.02 1.9 0.13 1.72 0.02	4:00		2.02	0.05				1.62	0.03			
1.9 0.12 2.15 0.09 2.02 0.15 1.67 0.02 2.02 0.15 1.65 0.02 1.72 0.02	3:30		1.84	0.09				1.72	0.04			13000
2.15 0.09 1.67 0.02 2.02 0.15 1.65 0.02 1.9 0.13 1.72 0.02	3:00		1.9	0.12				1.64	0.03			620
2.02 0.15 1.65 0.02 1.9 0.13 1.72 0.02	4:00		2.15	0.0				1.67	0.02			320
1.9 0.13 1.72 0.02	3:30		2.02	0.15				1.65	0.02			20
	3:00		1.9	0.13				1.72	0.02			180

.

82079	Turbidity	EN C					10	33	15	7	3.5	5.1	7	3.2	3.2	2	8.9	1.8	2.2	2.5	2.4
70507	Phosphorus, Tot Ortho	mg/l as P		0.02	0.05	0.02 U	0.02	0.02 Q	0.02												
32219	Pheophytin	Ratio	Bef/Aft Acid		1.335																
32218	Pheophytin-A	l/gn	(Spec Acid)		2.64	0.5 U															
32214	Chlorophyll-C	I/bn	(Tri Unc.)		0.5 U	0.5 U															
32212	Chlorophyll-B Chlorophyll-C Pheophytin-A	l/gu	(Tri Unc.)		0.5 U	0.5 U															
32211	Chlorophyll-A	l/gu	(Spec Acid)		2.42	2.01															
32210	i Chlorophyll-A Chlorophyll-A Chlor	l/gn	(Tri Unc.)		4.096	1.823															
31649	u	n/100ml			800 L	90	420	800 L	7 008	160	380	190									
31648	E. Coli	n/100ml		230	800 L	420	800 L	800 L	800 L	200	130	20	25 U	120	1200	250	2000 L	220	250	25 U	75
Station ID 4ALCK002.17			Collection Date Time	08/06/2002 11:15	10/16/2002 10:55	12/10/2002 11:30	02/27/2003 14:00	04/10/2003 11:00	06/09/2003 13:30	07/21/2003 13:00	09/09/2003 12:15	11/05/2003 12:30	01/22/2004 13:00	03/17/2004 12:30	05/10/2004 12:30	07/06/2004 14:00	09/13/2004 13:30	11/17/2004 13:00	01/05/2005 14:00	03/22/2005 13:30	05/04/2005 13:00

Otation ID 47 in Co. IZOZ.	- 01:	D. D. L.	Ciald Dh	DECIDIE TOTAL (MC/L)	RESIDUE, TOTAL	RESIDUE, VOLATILE NONFILTRABLE (MG/L)
Collection Date Time 1/26/2005 13:00	Temp Celcius 3.92	Do Probe	8.24	RESIDUE, TOTAL (MG/L) 195	NONFILTRABLE (MG/L) 3 U	NONFILTRABLE (MO/L)
3/14/2005 15:20	9.43	11.18	8.01	172	3 U	×
5/24/2005 16:15	17.5	8.4	8.2	205	3	
7/13/2005 12:30	24.9	8	8.3		11	
9/19/2005 11:30	21.4	7.6	8.4		4	
10/13/2005 14:00	19.6	8.6	8.1		11	3 U
11/28/2005 11:30	6.5	11	7.8		3 U	
1/10/2006 12:00	8.7	11.7	8.5		4 3 U	
3/8/2006 11:30	9.7	12.7	8.4		6	
5/4/2006 11:00	17.3	9.3	8 8.5		7	
7/17/2006 12:00 9/12/2006 10:00	26 19.3	8.9 8.9	8		3	
11/7/2006 13:00	8.5	9.7	8.1		3 U	
1/4/2007 15:30	7.5	12.2	7.9	145	3	
3/13/2007 15:00	13.5	12	8	203	3 U	
5/9/2007 11:00	17.2	11	7.7	191	3	
7/10/2007 10:30	26	8.3	7.2	251	12	
9/11/2007 12:00	25	7.8	7.7	278	6	
11/1/2007 10:30	12.3	9	6.5	272	5	
1/16/2008 11:00	4.4	14.2	6.6	243	3 U	2.11
3/3/2008 12:15	10.7	12.5	8		3 U	3 U
3/5/2008 10:30	11.3	10	7.5			
3/5/2008 10:31	40.0	10.1	7.0		39	8
4/7/2008 13:15	10.8 14.1	12.1 10.6	7.9 8	153	14	·
5/1/2008 11:00 7/7/2008 15:30	24.3	8.1	8.2	246	12	
9/8/2008 15:30	27	8.3	8.4	215	5	
11/6/2008 10:30	11	15	8.4	271	3 U	
2/10/2009 10:30	8.4	13.2	8.5	229	5	
4/6/2009 10:00	13.2	9.4	7.1	144	8	
6/16/2009 14:00	20	7.9	8.2	233	77	
8/13/2009 11:00	24.9	8.6	8.1	236	13	
10/14/2009 9:30	13.1		8.1	259	3	
12/15/2009 10:30	10.3		7.6	156	18	
2/18/2010 10:30	5		8	209	3 3	
4/15/2010 11:30	14.3		8.1	190	11	
6/10/2010 11:00	22.5 24.5		8.1 8.2	247 265	12	
08/31/2010 11:00 10/13/2010 10:00	17.8		8	265	2 QQ	
12/21/2010 11:30	2.3	13.8	8	251	1 QQ	
02/09/2011 11:00	4.4	,		217	1 QQ	
04/06/2011 11:30	10.7		8.7	168	26	
06/15/2011 16:00	24		8.3	261	6	
08/01/2011 10:30	26.6		8.2	260	6	
10/04/2011 11:00	14.2		8.3	270	2 QQ	
12/14/2011 11:00	9		8.2	191	3	
02/09/2012 11:30	7.6		8.4	186	2 QQ 5	
03/07/2012 11:00	8		7.8 8.1	168 183	9	
05/02/2012 10:30 07/05/2012 13:00	19 28.7		8.2	223	6	
09/24/2012 11:00	17.9		8.2	249	3	
11/06/2012 11:00	8.3		8.3	267	1 QQ	
01/07/2013 11:35	7	15.6	7.9	253	2 QQ	
03/05/2013 08:55	5.5		7.9	188	2 QQ	
05/30/2013 08:45	20.4		8.1	213	6	
07/18/2013 09:10	22.3	8.4	7.9	186	7	
09/12/2013 09:45	23.7	8.1	7.9	237	3	
11/21/2013 10:25	8.6	11.9	8	246	1 QQ	
02/24/2014 13:10	8.5		7.5	174	12 2 QQ	
04/24/2014 08:55	14	0.4	7.5	323 219	2 QQ 5	
06/16/2014 10:50	23.6 25.7	8.4 9	7.8 8.3	219 253	4	
08/07/2014 14:20	14.84	9	7.91	252	5	
10/29/2014 09:30 12/03/2014 10:00	7.83		7.28	144	25	
01/26/2015 16:00	6.21		8.35	210	4	
03/12/2015 10:00	9.39		7.92	166	8	
05/21/2015 10:15	19.52		7.99	217	5	
07/07/2015 10:20	23.16	7.74	7.95			

Station ID 4AROA202.

Station ID 4AROA202.					
	RESIDUE, FIXED	NITROGEN, TOTAL	NITROGEN, AMMONIA,	KJELDAHL, TOTAL,	NITRITE PLUS NITRATE,
Collection Date Time	NONFILTRABLE (MG/L)	(MG/L AS N)	TOTAL (MG/L AS N)	(MG/L AS N)	TOTAL 1 DET. (MG/L AS N)
1/26/2005 13:00		0.79			
3/14/2005 15:20		0.63			
5/24/2005 16:15		0.64			
7/13/2005 12:30		0.8	0.04 U		0.49
9/19/2005 11:30		0.66	0.04 U		0.42
10/13/2005 14:00	10				
11/28/2005 11:30		0.56	0.04 U		0.38
1/10/2006 12:00		0.61	0.04 U		0.39
		0.72	0.04 U		0.55
3/8/2006 11:30		0.69	0.04 U		0.33
5/4/2006 11:00					0.4
7/17/2006 12:00		0.87	0.04 U		0.45
9/12/2006 10:00		0.59	0.04 U		
11/7/2006 13:00		0.54	0.04 U		0.35
1/4/2007 15:30		0.63			
3/13/2007 15:00		0.79			
5/9/2007 11:00		0.5			
7/10/2007 10:30		0.69			
9/11/2007 12:00		0.74			
11/1/2007 10:30		0.87			
1/16/2008 11:00		0.51		0.3	
3/3/2008 12:15	3 U				
3/5/2008 10:30				0.4	
3/5/2008 10:31		0.67			
4/7/2008 13:15	31				
5/1/2008 11:00		0.64		0.6	
7/7/2008 15:30		0.65		0.5	
9/8/2008 15:30		0.66		0.5	
		0.44		0.2	
11/6/2008 10:30		0.6		0.3	
2/10/2009 10:30				0.2	
4/6/2009 10:00		0.56		0.6	
6/16/2009 14:00		0.98			
8/13/2009 11:00		0.83		0.2	
10/14/2009 9:30	-	0.58		0.1	
12/15/2009 10:30		0.87		0.1	
2/18/2010 10:30		0.87		0.1	
4/15/2010 11:30		0.62		0.2	
6/10/2010 11:00		0.77		0.2	
08/31/2010 11:00		0.95		0.2	
10/13/2010 10:00		0.72		0.2	
12/21/2010 11:30		0.96		0.2	
02/09/2011 11:00		0.79		0.1	
04/06/2011 11:30		0.69		0.4	
06/15/2011 16:00		0.8		0.2	
08/01/2011 10:30		0.69		0.3	
10/04/2011 11:00		0.56		0.1	
12/14/2011 11:00		1.01		0.2	
02/09/2012 11:30		0.64		0.2	
03/07/2012 11:00		0.76		0.2	
05/02/2012 11:00		0.6		0.5	
		0.74		0.3	
07/05/2012 13:00		0.69		0.3	
09/24/2012 11:00				0.2	
11/06/2012 11:00		0.37 0.63		0.1	
01/07/2013 11:35				0.1	
03/05/2013 08:55		0.61			
05/30/2013 08:45		0.56		0.2	
07/18/2013 09:10		0.7		0.3	
09/12/2013 09:45		0.77		1.3	
11/21/2013 10:25		0.49		0.1	
02/24/2014 13:10		0.83		0.2	
04/24/2014 08:55		0.52		0.1	
06/16/2014 10:50		0.66		0.2	
08/07/2014 14:20		0.67		0.1	
10/29/2014 09:30		0.64		0.1	
12/03/2014 10:00		0.75		0.4	
01/26/2015 16:00		0.62		0.2	
03/12/2015 10:00		1.14		0.1	
05/21/2015 10:05		0.69		0.2	
07/07/2015 10:13		212.2			
01/01/2010 10.20					

Station ID 4AROA202.					
	PHOSPHORUS, TOTAL	CARBON, TOTAL	CARBON, DISSOLVED	FECAL COLIFORM, MEMBR	E. COLI - MTEC-MF
Collection Date Time	(MG/L AS P)	ORGANIC (MG/L AS C)	ORGANIC (MG/L AS C)	FILTER,M-FC BROTH,44.5 C	N0/100ML
1/26/2005 13:00	0.01			120	75
3/14/2005 15:20	0.01			50	25 U
5/24/2005 16:15	0.02			220	280
7/13/2005 12:30	0.04			180	120 200
9/19/2005 11:30	0.03			150	200
10/13/2005 14:00		2 U		75	50
11/28/2005 11:30	0.01 U			75 25 U	25 U
1/10/2006 12:00	0.01			25 U	25 U
3/8/2006 11:30	0.01			180	120
5/4/2006 11:00	0.03			300	25
7/17/2006 12:00	0.02			300	320
9/12/2006 10:00	0.01			50	50
11/7/2006 13:00	0.01 0.01			25 U	25
1/4/2007 15:30	0.02			25 U	25 U
3/13/2007 15:00	0.02			50	75
5/9/2007 11:00 7/10/2007 10:30	0.04			25	50
9/11/2007 12:00	0.04			120	25 U
11/1/2007 10:30	0.03			50	75
1/16/2008 11:00	0.02			25 U	25 U
3/3/2008 12:15	0.02	2 U	2 U		
3/5/2008 10:30	0.03			500	300
3/5/2008 10:31	313.7				
4/7/2008 13:15		4.7	3.91		
5/1/2008 11:00	0.03			120	120
7/7/2008 15:30	0.03			50	120
9/8/2008 15:30	0.03			400	75
11/6/2008 10:30	0.01			25 U	25 U
2/10/2009 10:30	0.01			25 U	25
4/6/2009 10:00	0.02			50	50
6/16/2009 14:00	0.12			2000 L	1400
8/13/2009 11:00	0.05			150	120
10/14/2009 9:30	0.03			50	100
12/15/2009 10:30	0.04			180	100
2/18/2010 10:30	0.01			25 U	25 U
4/15/2010 11:30	0.02			5 0	25 U
6/10/2010 11:00	0.02			180	180
08/31/2010 11:00	0.03			520	75
10/13/2010 10:00	0.02			150	25
12/21/2010 11:30	0.01			25	25
02/09/2011 11:00	0.002 U				100
04/06/2011 11:30	0.05			500	400
06/15/2011 16:00	0.03			250	75 450
08/01/2011 10:30	0.02			750	150
10/04/2011 11:00	0.02			400	50
12/14/2011 11:00	0.02			100	25 U
02/09/2012 11:30	0.01			25 U 50	25 U
03/07/2012 11:00	0.02			100	125
05/02/2012 10:30	0.03			50	75
07/05/2012 13:00	0.03 0.02			125	25
09/24/2012 11:00	0.02			25 U	25 U
11/06/2012 11:00	0.01			25 U	25 U
01/07/2013 11:35 03/05/2013 08:55	0.01			25 Q	25 U
05/30/2013 08:45	0.02			275 Q	75
07/18/2013 09:10	0.03			450	175
09/12/2013 09:45	0.02			300	100
11/21/2013 10:25	0.01			125	75
02/24/2014 13:10	0.02			25	25 U
04/24/2014 08:55	0.01			225 Q	175
06/16/2014 10:50	0.02			400	125
08/07/2014 14:20	0.02			75	25
10/29/2014 09:30	0.01			25	
12/03/2014 10:00	0.06			425	
01/26/2015 16:00	0.02			25 U	
03/12/2015 10:00	0.02			25 U	
05/21/2015 10:15	0.02			125	
07/07/2015 10:20				1800 BQ	

Station ID 4ANOA202.			
	E.COLI BY COLILERT	TURBIDITY, LAB NEPHELOMETRIC	HARDNESS, TOTAL
Collection Date Time	SM 9223-B	TURBIDITY UNITS, NTU	mg/l as CaCO3
1/26/2005 13:00		3	
3/14/2005 15:20		2.4	
5/24/2005 16:15		3.5	
7/13/2005 12:30		11	
9/19/2005 11:30		4.5	
		4.0	
10/13/2005 14:00		40	
11/28/2005 11:30		. 4.2	
1/10/2006 12:00		1.56	
3/8/2006 11:30		2.26	
5/4/2006 11:00		3.52	
7/17/2006 12:00		0.67	
9/12/2006 10:00		2.02	
11/7/2006 13:00		2.1	
1/4/2007 15:30		3	
3/13/2007 15:00		1.6	
		6.3	
5/9/2007 11:00			
7/10/2007 10:30		11.5	
9/11/2007 12:00		5.3	
11/1/2007 10:30		3.7	
1/16/2008 11:00		0.9	
3/3/2008 12:15			
3/5/2008 10:30			
3/5/2008 10:31			
4/7/2008 13:15			
5/1/2008 11:00		3.7	
7/7/2008 15:30		7.2	
9/8/2008 15:30		5	
11/6/2008 10:30		2.3	
2/10/2009 10:30		1.9	
4/6/2009 10:00		4.4	
6/16/2009 14:00		78.6	
8/13/2009 11:00		5.3	
10/14/2009 9:30		1.9	
12/15/2009 10:30		12.1	
		1.22	
2/18/2010 10:30			
4/15/2010 11:30		1.55	
6/10/2010 11:00		2.78	
08/31/2010 11:00		3.89	
10/13/2010 10:00		1.48	
12/21/2010 11:30		0.74	
02/09/2011 11:00		0.96	
04/06/2011 11:30		16	
06/15/2011 16:00		3.85	
08/01/2011 10:30		3.63	
		1.99	
10/04/2011 11:00			
12/14/2011 11:00		2.47	
02/09/2012 11:30		0.82	
03/07/2012 11:00		3.73	
05/02/2012 10:30		5.43	
07/05/2012 13:00		3.7	
09/24/2012 11:00		2.73	
11/06/2012 11:00		1.72	
01/07/2013 11:35		3.97	
		0.9	
03/05/2013 08:55			
05/30/2013 08:45		2.42	
07/18/2013 09:10		6.46	
09/12/2013 09:45		2.25	
11/21/2013 10:25		0.52	
02/24/2014 13:10		9.41	
04/24/2014 08:55		1.36	
06/16/2014 10:50		3.14	
08/07/2014 14:20		3.05	
	21	2.72	
10/29/2014 09:30	31		
12/03/2014 10:00	473	22.1	4.40
01/26/2015 16:00	10 U	2.65	146
03/12/2015 10:00	75	6.6	144
05/21/2015 10:15	187	2.21	179
07/07/2015 10:20	573		

Categories 4 and 5 by DCR Watershed*

Roanoke and Yadkin River Basins

Fact Sheet prepared for DCR Watershed: L05*

Cause Group Code: L05R-04-BAC

Lick Run

Location: The upper limit is near Shaffers Crossing rail yard and headwaters from along I-581 on downstream to the mouth of Lick Run on Tinker Creek at river mile 1.41. The 1996, 1998 and 2002 impaired waters have expanded by 5.01 miles with the

2004 Listing (Roanoke Quad).

City / County: Roanoke City

Roanoke Co.

Use(s):

Recreation

Cause(s) /

VA Category: Escherichia coli/ 4A

Originally 303(d) Listed in 2002 for fecal coliform (FC) bacteria. The Tinker Creek Bacteria Total Maximum Daily Load (TMDL) is U.S. EPA approved 8/05/2004 [Fed ID 24540] and SWCB approved 12/02/2004. The bacteria impairment remains for these 9.36 mile waters.

4ALCK002.17- (Washington Park) There are no additional data beyond the 2008 IR. One of three remaining E.coli samples exceeds the instantaneous criterion at 250 cfu/100 ml in 2012. Seven of 15 Escherichia coli (E.coli) samples exceed the 235 cfu/100 ml instantaneous criterion within the 2010 data window. Excessive values range from 250 to greater than 2000 cfu/100 ml. The 2008 data window reports E.coli samples exceed the WQS instantaneous criterion in nine of 18 samples. Exceeding values range from 250 to greater than 2000 cfu/100 ml. The 2006 Integrated Report (IR) reveals eight of 15 E.coli samples exceed the 235 cfu/100 ml instantaneous criterion with the same range of exceedance.

4ALCK000.38 (Norfolk Southern parking lot bridge) The 2002 original listing station found exceedances of the former FC instantaneous and geomean criteria in a Special Study conducted in 1997. E.coli excursions of the 235 cfu/100 ml instantaneous criterion within the 2010 data window are 21 of 46 E.coli samples with exceedances ranging from 280 to 3000 cfu/100 ml. There are no additional data beyond the 2010 IR. The 2012 assessment finds 10 of 24 remaining samples in excess of the instantaneous criterion. The range of exceeding values is 350 to greater than 2000 cfu/100 ml. The 2008 IR finds 19 of 38 E.coli samples in excess of the instantaneous criterion with exceedances ranging from 280 to 3000 cfu/100 ml. 2006 E.coli excursions of the instantaneous criterion are found in 13 of 25 samples with the same exceedance range as in 2008.

Cycle Schedule or First EPA Listed Approval Size

Assessment Unit / Water Name / Description VAW-L05R_LCK01A00 / Lick Run / Lick Run mainstem from near Shaffer's Crossing downstream to Lick Run mouth on Tinker Creek.

Cause Category / Name 4A Escherichia coli Nested Listed Approval

8/5/2004 9.37

Lick Run

DCR Watershed: L05*

Recreation

Estuary (Sq. Miles) Reservoir (Acres)

River (Miles)

Escherichia coli - Total Impaired Size by Water Type:

9.37

Categories 4 and 5 by DCR Watershed*

Roanoke and Yadkin River Basins

Fact Sheet prepared for DCR Watershed: L05*

Sources:

Discharges from Municipal Separate Storm Sewer Systems (MS4)

Density Area)

Municipal (Urbanized High Density Area)

Sanitary Sewer Overflows (Collection System Failures)

Unspecified Domestic

Waste

Wastes from Pets

Wildlife Other than Waterfowl

*Header Information: Location, City/County, Cause/VA Category and Narratives; describe the entire extent of the Impairment. Sizes presented are for Assessment Units (AUs) lying within the DCR Watershed boundary noted above.

Categories 4 and 5 by DCR Watershed*

Roanoke and Yadkin River Basins

Fact Sheet prepared for DCR Watershed: L05*

Cause Group Code: L05R-01-BAC

Tinker Creek

Location: Tinker Creek mainstem from its headwaters downstream to the Tinker Creek confluence with the Roanoke River.

City / County: Botetourt Co.

Roanoke City

Roanoke Co.

Use(s):

Recreation

Cause(s) /

VA Category: Escherichia coli/ 4A

Originally 303(d) Listed in 1998 for fecal coliform (FC) bacteria the Tinker Creek Bacteria Total Maximum Daily Load (TMDL) is U.S. EPA approved 8/05/2004 [Fed IDs: 7787 (FC), 21671 and 21672] and SWCB approved 12/02/2004. The 19.33 mile bacteria impairment remains.

4ATKR015.88 (Off Rt. 779 at USGS Gage) There are no additional data beyond the 2010 IR. The 2012 assessment finds six of 15 remaining Escherichia coli (E.coli) observations exceed the 235 cfu/100 ml instantaneous criterion ranging from 320 cfu/100 ml to greater than 2000. E.coli exceed the instantaneous criterion in 22 of 37 samples within the 2010 data window. Exceeding values range from 270 to 2300 cfu/100 ml. 2008 collections find E.coli in excess of the instantaneous criterion in 18 of 30 samples with the same range of exceedance as 2010. The 2006 Integrated Report (IR) exceedance range is the same from 17 of 25 samples.

4ATKR009.30 (Rt. 11 Bridge near Hollins) There are no additional data beyond the 2008 assessment. One of three remaining E.coli observations exceeds the instantaneous criterion of 235 cfu/100 ml at 250 within the 2012 data window. 2010 data find E. coli exceeds the 235 cfu/100 ml instantaneous criterion in nine of 15 samples with the same range of exceedance as in 2008. 2008 samples reveal 10 excursions of the instantaneous criterion from 18 samples. Exceedances range from 420 to 1100 cfu/100 ml. 2006 IR reports nine of 15 E. coli excursions of the instantaneous criterion and the same range of exceedance as 2008.

4ATKR000.69 (Rt. 24 Bridge, Vinton) The 2012 data window finds Escherichia coli (E.coli) exceed the instantaneous criterion of 235 cfu/100 ml in 16 of 35 observations ranging from 280 cfu/100 ml to 1200. 2010 E.coli samples exceed the instantaneous criterion of 235 cfu/100 ml in 31 of 49 observations. The range of exceeding values is from 250 cfu/100 ml to greater than 2000. The 2008 assessment finds E.coli exceedances occur in 29 of 44 observations with the same range of exceedance as 2010. The 2006 Integrated Report (IR) found E.coli exceeding the instantaneous criterion in 20 of 30 observations. Exceeding values range from 300 cfu/100 ml to greater than 2000.

Assessment Unit / Water Name / Description VAW-L05R_TKR01A00 / Tinker Creek / Tinker Creek	Cause 4A	e Category / Name Escherichia coli	Nested	Cycle First Listed 2006	Schedule or EPA Approval 8/5/2004	Size 5.33
mainstem from the its confluence with the Roanoke River upstream to the mouth of Carvin Creek. VAW-L05R_TKR01B06 / Tinker Creek / Tinker Creek mainstem from the Carvin Creek mouth upstream to the	4A	Escherichia coli		2006	8/5/2004	6.54
confluence of Buffalo Creek. VAW-L05R_TKR02A00 / Tinker Creek / Tinker Creek mainstem from the mouth of Buffalo Creek upstream to the	4A	Escherichia coli		2006	8/5/2004	4.34
Roanoke City diversion tunnel located just upstream of the USGS stream gaging station. VAW-L05R_TKR03A00 / Tinker Creek / Tinker Creek mainstem from the Roanoke City diversion tunnel to Carvin Cove on upstream to its headwaters.	4A	Escherichia coli		2006	8/5/2004	3.12

Categories 4 and 5 by DCR Watershed*

Roanoke and Yadkin River Basins

Fact Sheet prepared for DCR Watershed: L05*

Tinker Creek

DCR Watershed: L05*

Recreation

Estuary (Sq. Miles) Reservoir (Acres)

River (Miles)

Escherichia coli - Total Impaired Size by Water Type:

19.33

Sources:

Discharges from Municipal

Separate Storm Sewer Systems (MS4)

Feeding Operations)

Municipal (Urbanized High

Density Area)

Sanitary Sewer Overflows (Collection System Failures)

Unspecified Domestic

Waste

Wastes from Pets

Livestock (Grazing or

Wildlife Other than

Waterfowl

*Header Information: Location, City/County, Cause/VA Category and Narratives; describe the entire extent of the Impairment. Sizes presented are for Assessment Units (AUs) lying within the DCR Watershed boundary noted above.

Categories 4 and 5 by DCR Watershed*

Roanoke and Yadkin River Basins

Fact Sheet prepared for DCR Watershed: L05*

Cause Group Code: L05R-01-BEN

Tinker Creek

Location: Tinker Creek mainstem from the its confluence with the Roanoke River upstream to the mouth of Carvin Creek.

City / County: Botetourt Co.

Roanoke City

Roanoke Co.

Use(s):

Aquatic Life

Cause(s) /

VA Category: Benthic-Macroinvertebrate

Bioassessments/5A

The benthic community is impaired for 5.33 miles based on a 2008 Virginia Stream Condition Index survey (VSCI).

4ATKR000.69 (Rt. 24 Bridge - Vinton) One 2008 VSCI survey scoring 50.9. There have been no additional surveys within the 2012 data window. The score indicates a stressed community with low taxonomic diversity and low abundance of pollution-sensitive organisms. A visual assessment indicates that more than 70% of the stream substrate was covered with a thick mat of algae which may limit habitat available for macroinvertebrates that require clean substrates.

Assessment Unit / Water Name / Description VAW-L05R_TKR01A00 / Tinker Creek / Tinker Creek mainstem from the its confluence with the Roanoke River upstream to the mouth of Carvin Creek.

Cause Category / Name
5A Benthic-Macroinvertebrate
Bioassessments

Cycle Schedule or First EPA Nested Listed Approval

2010 2022

TMDL

Size 5.33

Tinker Creek

DCR Watershed: L05*

Aquatic Life

Estuary (Sq. Miles) Reservoir (Acres) River (Miles)

Benthic-Macroinvertebrate Bioassessments - Total Impaired Size by Water Type:

5.33

Sources:

Loss of Riparian Habitat

Municipal (Urbanized High Density Area) Urban Runoff/Storm Sewers

Wet Weather Discharges (Non-Point Source)

*Header Information: Location, City/County, Cause/VA Category and Narratives; describe the entire extent of the Impairment. Sizes presented are for Assessment Units (AUs) lying within the DCR Watershed boundary noted above.

Categories 4 and 5 by DCR Watershed*

Roanoke and Yadkin River Basins

Fact Sheet prepared for DCR Watershed: L05*

Cause Group Code: L05R-01-TEMP

Tinker Creek

Location: Tinker Creek mainstem from the confluence of Buffalo Creek downstream to its confluence with the Roanoke River.

City / County: Botetourt Co.

Roanoke City

Roanoke Co.

Use(s):

Aquatic Life

Cause(s) /

VA Category: Temperature, water/ 5C

The waters remain impaired for the Aquatic Life Use.

4ATKR009.30- (Rt. 11 Bridge - near Hollins) There are no additional temperature data beyond the 2008 IR. No exceedances are found in the remaining three measurements within the 2012 data window. 2010 data find one temperature measurement exceeding the 21°C criterion from 15 measurements. 2008 temperature data exceeds the stockable trout water criterion in three of 23 measurements at 23°C (6/04/2002); 25 °C (8/08/2001) and 21.2°C (7/06/2004). Temperature exceeds the criterion in three of 20 measurements in 2006 with the same exceeding measurements as in 2008. Temperature exceeds the 21°C criterion in two of eight measurements within the 2004 data window. Temperature exceedances are 23°C (6/04/2002) and 25 °C (8/08/2001).

4ATKR000.69- (Rt. 24 Bridge in Vinton) A 1999 Consent Decree Attachment A station. The 2012 assessment reports five of 38 measurements exceed the Class V temperature criterion (21°C). Exceedances range from 21.3 to 22.1°C. Seven of 41 measurements exceed the Class V criterion with the 2010 data window. Exceedances range from 21.3 to 22.2°C. Ten of 48 measurements exceed the 21°C criterion within the 2006 & 2008 data windows. Exceedances range from 21.1°C to 23.4°C for both assessments. The 2004 assessment reports three of 56 measurements exceed the 21°C Class V criterion although Fully Supporting from assessed data. Exceedances occur on 7/22/1999 (23°C), 6/13/2000 (22°C) and 8/08/2001 (23°C). The 2002 data window shows seven of 59 temperature measurements in excess of the criterion.

Temperature, water -	Total Impaired Size by Water Type:				11.87
Aquatic Life	,	(Sq. IVIII	69)	(Acres)	(IVIIICS)
DCR Watershed: L05*		Estuai (Sg. Mil	,	Reservoir	River (Miles)
Tinker Creek					
upstream to the mouth of Carvin Creek. VAW-L05R_TKR01B06 / Tinker Creek / Tinker Creek mainstem from the Carvin Creek mouth upstream to the confluence of Buffalo Creek.	5C Temperature, water		2002	2014	6.54
VAW-L05R_TKR01A00 / Tinker Creek / Tinker Creek mainstem from the its confluence with the Roanoke River	5C Temperature, water		2002	2014	5.33
Assessment Unit / Water Name / Description	Cause Category / Name	Nested	Cycle First Listed	Schedule or EPA Approval	Size

Categories 4 and 5 by DCR Watershed*

Roanoke and Yadkin River Basins

Fact Sheet prepared for DCR Watershed: L05*

Sources:

Natural Conditions - Water Quality Standards Use Attainability Analyses Needed

*Header Information: Location, City/County, Cause/VA Category and Narratives; describe the entire extent of the Impairment. Sizes presented are for Assessment Units (AUs) lying within the DCR Watershed boundary noted above.

Categories 4 and 5 by DCR Watershed*

Roanoke and Yadkin River Basins

Fact Sheet prepared for DCR Watershed: L05*

Cause Group Code: L12L-01-PCB

Roanoke River, Tinker Creek and Peters Creek.

Location: Roanoke River from the confluence of the North and South Forks downstream to Niagara Dam. The impairment

includes Peters Creek from the Rt. 460 Bridge downstream to its confluence on the Roanoke River; and Tinker Creek

from the mouth of Deer Branch downstream to the Tinker Creek confluence on the Roanoke River.

City / County: Botetourt Co.

Montgomery Co.

Roanoke City

Roanoke Co.

Salem City

Use(s):

Fish Consumption

Public Water Supply

Wildlife

Cause(s) /

VA Category: PCB in Fish Tissue/ 4A

PCB in Water Column/ 4A

The waters of the Roanoke River (28.60 miles), Peters Creek (2.52 miles) and Tinker Creek (5.33 miles) are under a Virginia Department of Health (VDH) Fish Consumption Advisory for Polychlorinated Biphenols (PCB) issued 7/27/05. An additional 3.14 miles on the Roanoke from Niagara Dam to Smith Mtn. Lake are under advisory and described in Fact Sheet L12L-02-PCB. The VDH Advisory is based on fish tissue found to originally contain greater than 50 parts per billion (ppb) of PCBs. The DEQ Water Quality Standard (WQS) based tissue value (TV) criterion is 20 ppb in fish tissue. The previous advisory (issued 10/20/03) recommended that no more than two eight-ounce meals per month of flathead catfish (less than 32 inches in size), striped bass, gizzard shad, redhorse sucker, largemouth bass and carp should be consumed. Per the previous advisory, flathead catfish (greater than 32 inches in size) should not be eaten. The advisory has been updated to also recommend that no more than two eight-ounce meals per month of channel catfish should be consumed.

The Roanoke (Staunton) River PCB TMDL Study is U.S. Environmental Protection Agency (EPA) approved on 4/9/2010 and State Water Control Board (SWCB) approved 12/9/2010. A 3.14 mile portion of the Roanoke River is not included in the PCB TMDL Study. The following Federal Identification Numbers by watershed are approved:

L03R Roanoke River: 38624, 38625, 38627, 38629, 38543, 38630

L04R Roanoke River: 24537, 38552, 38632, 38633, 38634, 38635, 38636

Peters Creek: 38468 L05R Tinker Creek: 38467

Fish tissue collections from locations on the Roanoke mainstem, Blackwater River, Mason Creek, Mudlick Creek, Paint Bank Branch, Peters Creek, Tinker Creek and the North and South Forks of the Roanoke River are reviewed by the VDH in making an advisory determination. A complete listing of collection sites and associated fish tissue data are available at http://www.deq.virginia.gov/fishtissue/fishtissue.html. A more detailed presentation of the data can also be found using an interactive mapping application at http://www.deq.virginia.gov/wqa/. The VDH Advisory information is also available via the web at http://www.vdh.virginia.gov/epidemiology/DEE/PublicHealthToxicology/Advisories/index.htm.

Thirty day deployment of Semi-Permeable Membrane Devices (SPMD) or virtual fish in 2008 find exceedances of the WQS PCB water column criterion of 0.00064 micrograms per liter (µg/L) or 640 picograms per liter (pg/L). Exceedances are recorded for the Fish Consumption Use via WQS 'Other Waters' (12.09 miles) as well as the Wildlife Use (12.09 miles) and the 'Public Water Supply Use' (PWS 1.64 miles) for the human health criterion at the stations listed below. The 640 pg/L criterion applies to these Uses. The 'PCB in Water Column' impairment on the mainstem of the Roanoke River extends from the confluence of Mason Creek downstream to the mouth of Back Creek (15.23 miles). Fact Sheet L12L-02-PCB describes and the additional 3.14 miles for each of these uses. The 'PCB in Water Column' impairment overlays a total 15.23 mile portion of the overall VDH Fish Consumption Advisory area above Smith Mountain Lake.

4AROA207.08- (Near Memorial Bridge downstream of Peters Creek)- 2008 SPMD 'OE'. Exceeds PCB WQS 'Other Waters' 640 pg/L criterion from one of two deployments at 642.

4AROA204.76 (Downstream of Ore Br., near VA Scrap Iron Co. above American Visco)- Two 2008 SPMD deployments find exceedance of the WQS 'Other Waters' 640 pg/L criterion at 987 and 3,014 pg/L.

Categories 4 and 5 by DCR Watershed*

Roanoke and Yadkin River Basins

Fact Sheet prepared for DCR Watershed: L05*

4AROA202.20 (13th Street Bridge - above STP)- Two 2008 SPMD deployments find exceedance of the WQS 'Other Waters' 640 pg/L criterion at 1,376 and 3,044 pg/L.

4AROA199.20 (Blue Ridge Parkway Bridge - Niagara)- Two 2008 SPMD deployments find exceedance of the WQS 'Other Waters' and 'PWS' 640 pg/L criterion at 1,213 and 1,588 pg/L.

TMDL Schedule or Cycle **EPA**

Assessment Unit / Water Name Description VAW-L05R TKR01A00 / Tinker Creek / Tinker Creek mainstem from the its confluence with the Roanoke River upstream to the mouth of Carvin Creek.

Cause Category / Name 4A PCB in Fish Tissue

First Nested Listed

Approval 2006

Size 4/9/2010 5.33

Roanoke River, Tinker Creek and Peters Creek.

DCR Watershed: L05* **Fish Consumption**

Estuary (Sq. Miles)

Reservoir (Acres)

River (Miles)

PCB in Fish Tissue - Total Impaired Size by Water Type:

5.33

Sources:

Landfills

Source Unknown

Urban Runoff/Storm Sewers

Wet Weather Discharges (Non-Point Source)

*Header Information: Location, City/County, Cause/VA Category and Narratives; describe the entire extent of the Impairment. Sizes presented are for Assessment Units (AUs) lying within the DCR Watershed boundary noted above.

Table E-3: Point Sources Sediment TMDL Allocations

Facility Name	Permit Number	Annual Sediment Loads (tons/yr)	Allocated Loads (tons/yr)	Percent Reduction				
Western Virginia Water Authority	VA0025020	472.2	472.2	0				
Roanoke Electric Steel Corporation	VA0001589	92.9	92.9	0				
Shawville Town STP	VA0024031	9.1	9.1	0				
Carvin Cove Water Filtration Plant	VA0001473	17.6	17.6	0				
Crystal Springs WTP	VA0091065	8.8	8.8	0				
Norfolk Southern Railway Company - Shaffers Crossings	VA0001597	1.62	1.62	0				
Ellison Lafayette WWTP	VA0062219	11.2	11.2	0				
Blacksburg Country Club STP	VA0027481	1.57	1.57	0				
Roanoke Moose Lodge	VA0077895	0.21	0.21	0				
	Total Allocated Load 615.3 0							

The MS4 allocations detailed in Table E-2 are broken down by MS4 Urban area and shown in Table E-4.

Table E-4: Sediment TMDL Wasteload Allocations for MS4 Urban Areas

MS4 Permit Holder	Permit Number	Sediment Allocation (Tons/Year)
Roanoke County	VAR040022	1823
City of Roanoke	VAR040004	1487
Town of Vinton	VAR040026	128
Botetourt County	VAR040023	327
City of Salem	VAR040010	589
VDOT Roanoke Urban Area	VAR040017	27
Virginia Western Community College	VAR040030	2
Virginia Medical Center	VAR040050	10
VDOT Montgomery County Urban Area	VAR040016	4 ·
Town of Blacksburg	VAR040019	102
Town of Christianburg	VAR040025	75
	Total	4573

Table D-1: Stormwater TMDL Allocations for Individual Permitted Facilities

Permit Number	Facility	TSS Stormwater Allocation (tons/yr)
VA0001252	Associated Asphalt Inc.	2.78
VA0001333	Koppers Inc.	18.24
VA0001589	Roanoke Electric Steel Corp.	56.55
VA0001511	Norfolk Southern Railway Co - East End Shops	35.70
VA0001597	Norfolk Southern Railway Co Shaffers Crossing	28.83
VA0025020	Western Virginia Water Authority	34.17
VA0088358	Fred Whitaker Co.	0.97
VA0089991	Federal Mogul Corp.	12.30

Table D-2: TMDL Allocations for General Stormwater Permits Issued to Industrial Facilities

Permit Number	Facility	Receiving Waterbody	MS4 Area	TSS Allocation (tons/yr)
VAR050027	Auto Salvage & Sales, Inc.	Tinker Creek	Roanoke City	0.53
VAR050134	Greater Roanoke Transit Company	Lick Run	Roanoke City	0.81
VAR050135	Virginia Scrap Iron & Metal Company Inc	Roanoke River	Roanoke City	1.66
VAR050143	Virginia Scrap Iron & Metal Incorporated	Roanoke River	Roanoke City	1.66
VAR050144	North 11 Asphalt Plant - Roanoke	Carvins Creek	Roanoke City	27.43
VAR050145	Holland-Richards Vault Service	Mason Creek	Roanoke City	0.25
VAR050178	BFI Waste Systems LLC - Roanoke	Roanoke River	Roanoke City	0.63
VAR050207	1915 Plantation Rd LLC	Lick Run	Roanoke City	0.63
VAR050208	Walker Machine & Foundry Corp	Roanoke River	Roanoke City	2.40
VAR050272	Roanoke Regional Airport	Deer Creek	Roanoke City	179.22
VAR050273	Ralph Smith Inc Steel Fabrication	Roanoke River UT	Roanoke City	0.67
VAR050274	USPS Roanoke Vehicle Maintenance Service	Roanoke River	Roanoke City	3.56
VAR050275	Old Dominion Auto Salvage	Tinker Creek	Roanoke City	3.46
VAR050436	Norfolk Southern Corp - Roadway Material Yard	Roanoke River	Roanoke City	0.49
VAR050437	Estes Express Lines Incorporated	Roanoke River, UT	Roanoke City	2.33
VAR050460	Yellow Freight System Inc	Tinker Creek	Roanoke City	1.62
VAR050496	Federal Express Corp - ROAA Station	Lick Run	Roanoke City	1.69
VAR050516	Mennel Milling Company	Roanoke River	Roanoke City	0.32
VAR050519	FedEx Freight East, Inc.	UT to Lick Run	Roanoke City	1.73
VAR050520	O'Neal Steel Inc	Tinker Creek	Roanoke City	6.46
VAR050522	Progress Rail Services Corp - Roanoke	Roanoke River	Roanoke City	3.95

Appendix D D-2

	Po	Pointsources			rdisch	argers*	MS4s		
Stream	Baseline (mg/yr)	WLA (mg/yr)	% Reduction ^b	Baseline (mg/yr)	WLA (mg/yr)	% Reduction ^b	Baseline (mg/yr)	WLA (mg/yr)	% Reduction ^b
Roanoke River ^e	78,305.9	1,926.7	97.5	82,724.2	5.1	100.0	0.0	0.0	0.0
Lower Total	78,305.9	1,926.7	97.5	388,012.2	7.5	100.0	11.7	0.1	99.3

a. Stormwater loads were assigned to streams based on the spatial orientation of the permitted area within the subbasin network

- b. WLA percent reductions differ from TMDL percent reductions because they do not include an MOS load c. 2008 303(d) segment L12L-01-PCB d. 2008 303(d) segment L26R-01-PCB

- e. 2008 303(d) segment L19R-01-PCB

Table 6-4 Point source tPCBs WLAs

		Table 6-4. Point source tPC	DS VVL	AS		
Stream	NPDES ID	Facility	Pipe	Baseline (mg/yr)	WLA (mg/yr)	% Reduction ^a
		Upper Roanoke River				
North Fork Roanoke River	VA0027481	Blacksburg Country Club	1	10.7	17.8	-66.3
North Fork Roanok	e River Total			10.7	17.8	-66.3
South Fork Roanoke River	VA0062219	Montgomery County PSA - Elliston Lafayette WWTP	1	38.5	127.0	-229.6
South Fork Roanoke River	VA0024031	Montgomery County PSA - Shawsville STP	1	29.9	101.6	-239.6
South Fork Roanok	e River Total			68.4	228.6	-234.0
Peters Creek	VA0001589	Steel Dynamics	5	90.7	50.8	44.0
Peters Creek Total				90.7	50.8	44.0
Roanoke River	VA0025020	WVWA Roanoke Regional Water Pollution Control Plant	1	17,491.1	27,934.4	-59.7
Roanoke River	VA0001597	Norfolk Southern Railway Co - Shaffers Crossing	2	4.8	35.6	-642.0
Roanoke River Tot	al ^b			17,495.9	27,969.9	-59.9
Upper Total				17,665.8	28,267.1	-60.0
		Lower Roanoke (Staunton) River				
Roanoke River	VA0083097	Old Dominion Clover Power Station	1	197.4	319.3	-61.8
Roanoke River	VA0022241	Brookneal Town - Staunton River Lagoon	1	8.2	14.4	-74.2
Roanoke River	VA0001538	Dan River, Inc- Brookneal	1	474.8	244.1	48.6
Roanoke River	VA0083402	Old Dominion Altavista Power Station	1	22.7	21.5	5.0
Roanoke River	VA0020451	Town of Altavista-STP	1	21,311.1	662.6	96.9
Roanoke River	VA0083399	Old Dominion Pittsylvania Power Station	1	21.3	35.3	-66.0
Roanoke River	VA0001678	ITG Burlington Ind. LLC Hurt Plant	1	56,270.5	629.5	98.9
Roanoke River Tot	al ^c			78,305.9	1,926.7	97.5
Lower Total				78,305.9	1,926.7	97.5

a. WLA percent reductions differ from TMDL percent reductions because they do not include an MOS load b. 2008 303(d) segment L12L-01-PCB c. 2008 303(d) segment L19R-01-PCB

Table 6-5. Permitted stormwater dischargers tPCBs WLAs^a

Stream	NPDES ID	Stormwater discharger	Baseline (mg/yr)	WLA (mg/yr)	% Reduction ^c
		Upper Roanoke River	en beste is maktindiga en beste Bibliot population en bibliotisme	grandes programmes Antique constitues	
North Fork Roanoke River	VAR050204	Wolverine Advanced Materials	12.70	0.12	99.050
North Fork Roanoke River	VAR051352	MRSWA Solid Waste Transfer Station MRF	54.91	0.52	99.050

Significant Spill and Release Summary

S 00				T	T	T		T		T	T	T
Effectiveness of Monitoring Equipment	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Enforcement Actions	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Amount to Water	Unknown	0	0	0	0	0	0	0	0	0	0	0
Effective Secondary Containment	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Corrective Actions	Catch pan used to contain lead/ repairs by local mechanics	Contractor hired	Release secured / contractor hired	Release secured / contractor hired	Release secured / absorbents applied	Clean up completed	Clean up completed	Release secured / absorbents applied	Clean up completed	Release secured / contractor hired	Release secured / absorbents applied	Release secured / contractor hired
Source of Release/Cause	Ruptured tank on vehicle	Tank overflowed	Spilled during fueling	Sump overflowed	Unknown	Leak from dumpster	Operator error	Broken fitting	Sump overflowed	Sump overflowed	Spill during transfer	Broken fuel line
Volume Released	1 gallon	1 gallon	100 gallons	10 gallons	15 gallons	1 gallon	15 gallons	1 gallon	10 ounces	5 gallons	1 gallons	10 gallons
Released From/ Capacity In Gallons	Contractor Truck	Diesel Tank	Locomotive	Locomotive	Locomotive	Dumpster	Locomotive	Track Mobile	Locomotive	Locomotive	Tanker Truck	Locomotive
Material Released	Diesel	Diesel Fuel Additive	Diesel	Motor Oil	Lubricating Oil	Oil Residue	Diesel	Diesel	Motor Oil	Motor Oil	Diesel	Diesel
Date	4/18/12	5/3/12	5/30/12	8/6/12	9/24/12	10/3/12	10/6/12	10/22/12	1/5/13	2/21/13	2/27/13	3/3/13

Significant Spill and Release Summary

Effectiveness of Monitoring Equipment	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Enforcement Actions	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Amount to Water	0	0	0	0	0	0	0	0	0	0	0	0
Effective Secondary Containment	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Corrective Actions	Release secured / contractor hired	Release secured	Clean up completed	Contractor hired	Contractor hired	Release secured / absorbents applied	Release secured / absorbents applied	Contractor hired	Release secured / absorbents applied	Release secured / absorbents applied	Release secured /	Release secured / contractor hired
Source of Release/Cause	Loose radiator cap	Unknown	Sump overflowed	Unknown	Leak from fuel filers	Leak on engine	Leak on engine	Broken valve	Leak on locomotive	Leak on locomotive	Leak on locomotive	Leak on locomotive
Volume Released	40 gallons	Unknown	0.5 pints	5 gallons	50 gallons	20 gallons	½ pint	10 gallons	10 gallons	10 gallons	25 gallons	20 gallons
Released From/ Capacity In Gallons	Locomotive	Locomotive	Locomotive	Locomotive	Locomotive	Locomotive	Locomotive	Locomotive	Locomotive	Locomotive	Locomotive	Locomotive
Material Released	Motor Oil	Diesel	Lubricating Oil	Motor Oil	Diesel	Lubricating Oil	Motor Oil	Lubricating Oil	Lubricating Oil	Lubricating Oil	Diesel	Lubricating Oil
Date	3/22/13	3/23/13	3/29/13	5/16/13	6/13/13	6/15/13	6/23/13	9/12/13	10/8/13	12/1/13	12/9/13	12/18/13

Significant Spill and Release Summary

Date	Material Released	Released From/ Capacity In Gallons	Volume Released	Source of Release/Cause	Corrective Actions	Effective Secondary Containment	Amount to Water	Enforcement Actions	Effectiveness of Monitoring Equipment
1/29/14	Lubricating Oil	Locomotive	½ quart	Mechanical Failure	Release secured / clean up completed	NA	0	NA	NA
2/10/14	Motor Oil	Locomotive	1 gallons	Engine failure	Release secured / clean up completed	NA	0	NA	NA
2/20/14	Diesel	Locomotive	15 gallons	Spill during fueling operation	Release secured / contractor hired	NA	0	NA	NA
5/22/14	Lubricating Oil	Locomotive	4 gallons	Leak on locomotive	Release secured / absorbents applied	NA	0	NA	NA
7/7/14	Lubricating Oil	Locomotive	10 gallons	Leak on locomotive	Release secured / absorbents applied	NA	0	NA	NA
7/11/14	Lubricating Oil	Locomotive	20 gallons	Blown engine	Release secured / contractor hired	NA	0	NA	NA
8/27/14	Gasoline	Golf Cart	2 gallons	Cracked fuel tank	Release secured / absorbents applied	NA	0	NA	NA
9/12/14	Diesel	Locomotive	0.5 pints	Leak on locomotive	Release secured / absorbents applied	NA	0	NA	NA
1/2/15	Diesel	Refrigerator Car	2 gallons	Equipment failure	Release secured / absorbents applied	NA	0	NA	NA
1/28/15	Diesel	Locomotive	1 cup	Ruptured fuel hose	Release secured / clean up completed	NA	0	NA	NA
2/11/15	Lubricating Oil	Locomotive	15 gallons	Sump overflow	Release secured / contractor hired	NA	0	NA	NA
						1	The state of the s		

ATTACHMENT C **EFFLUENT SCREENING**

- 1. DMR Data
- 2. TMP Data
- EPA SW Benchmark Values
 Reduced Monitoring Frequency
 Evaluation Outfall 002
 PCB PMP Requirements

Norfolk Southern Shaffers Crossing DMR Data - Outfall 002

	Flow Mo Avg D	ow Daily Max	TOC Max Conc.	Coppe Ava Conc	Copper, TR Avg Conc Max Conc	Oil & Grease	Oil & Grease Ava Conc Max Conc	Ava Con	TPH Ava Cone Max Cone	M di	рН Мах	TSS Ava Cone Max Cone	S
DMR Due Date	MGD	MGD	mg/l	l/gu	l/6n	l/gm	mg/l	l/gm	mg/l	กร	S	l/bm	mg/l
10-Oct-2010	0.00216	0.00216	3.1	√QL	√OL	^QL	^QL			7.25	7.25	9	5
10-Nov-2010	0.0036	0.0036	2.2	ර් ද	ဂ ္ဂ (ģ :	ģ :			7.02	7.02	ਰੂ :	å
10-Dec-2010	0.00218	0.00216	2.3	ਤ੍ਹੇ ਹ	ģ ç	දු ද	ģ <u>(</u>			7.24	7.24	ģ ;	ģ,
10-Feb-2011	0.00288	0.00288	. E.	ģ ģ	ģ ģ	, ó	ģ ģ			7 41	7.41	? ?	
10-Mar-2011	0.0036	0.0036	3.8	å	å	å	å			7.53	7.53	ģ	ģ
10-Apr-2011	0.00432	0.00432	ო	<20	<20	<5.0	<5.0			6.74	6.74	13	13
10-May-2011	0.00216	0.00216	2.8	²⁰	²⁰	<5.0	<5.0			7.36	7.36	8.5	8.5
10-Jun-2011	0.00288	0.00288	7.7	, 50 , 50 , 50	, 420 430	<5.0	<5.0			7.28	7.28	<5.0	<5.0
10-3ur-2011	0.0030	0.0030	. v. 4	8 8	9 6	7.4.0	0.4.0			90.0	2 0.08	ດະເ	ດະ
10-Sep-2011	0.00288	0.00288	3.5	\$ 50	² 20	<4.6	<4.6			7.25	7.25	2,5	7.5
10-Oct-2011	0.0072	0.0072	2.7	<20	<20	<4.6	<4.6	0.94	0.94	7.43	7.43	t E	5
10-Nov-2011	0.00288	0.00288	7	<20	<20	<4.6	<4.6			7.14	7.14	<5.0	<5.0
10-Dec-2011	0.00432	0.00432	1.6	<20	<20	<4.7	<4.7			7.58	7.58	£	1
10-Jan-2012	0.00576	0.00576	26	දු ද	ද් ද	ģ ;	ဂ္ <u>ဂ</u>			7.42	7.42	6 (თ (
10-Feb-2012	0.00432	0.00432	1.1	8 8	8 6	(5.0 (5.1	<5.0 <5.1			22.7	22.7	ۍ پ	s d
10-Apr-2012	0.0432	0.0432	1.6	\$ 20	ç ş	44.9	44.9			6.82	6.82	5.0 5.0	5.5 5.0
10-May-2012	0.00432	432	2.1	<20	<20	<4.8	<4.8			7.28	7.28	<5.0	<5.0
10-Jun-2012	0.00432	0.0576	1.9	<20	<20	<5.1	<5.1			7.37	7:37	20	32
10-Jul-2012	0.0288	0.0288	2.4	<20	<20	<4.9	<4.9			7.45	7.45	9	2
10-Aug-2012	0.00288	0.0288	3.3	<20	<20	<4.9	<4.9			7.02	7.02	<5.0	<5.0
10-Sep-2012	0.00288	0.0288	თ : თ :	<20	<20	4.9	4.9		2	7.39	7.39	10	9
10-Oct-2012	0.0288	0.0288	6.5	02,00	25 6	<4.7	4.7	0.33	0.33	6.87	6.87	9 ;	9 9
10-Dec-2012	0.00232	0.00432		62,00	2, 00,	0.4.0	6.4.0			C7.7	62.7	27	77.
10-Jan-2013	0.00288	0.00288	1.8	27	27.2	<5.0	\$50 \$50		.,	96.9	96.9	5.0°	<5.0
10-Feb-2013	0.00288	0.00288	2.6	<20	<20	<4.7	<4.7			6.84	6.84	<5.0	<5.0
10-Mar-2013	0.00288	0.00288	1.8	<20	<20	<4.9	<4.9			7.76	7.76	<5.0	<5.0
10-Apr-2013	0.00288	0.0288	2.1	<20	<20	ģ	å			7.49	7.49	<5.0	<5.0
10-May-2013	0.00144	0.00144	9, 1	,50 ,50 ,50	² 20	6.4.9	6.4			6.84	6.84	<5.0	<5.0
10-Jul-2013	0.00288	0.00288	. 4	<20 <20	× × × × × × × × × × × × × × × × × × ×	5.7 5.7	<5.1			7.41	7.4	(5.0 (5.0	0.50
10-Aug-2013	0.00432	0.00432	1.4	<20	<20	ģ	ģ			7.62	7.62	8	200
10-Sep-2013	0.00432	0.00432	1.5	<20	<20	å	å			7	7	<5.0	<5.0
10-Oct-2013	0.00288		1.8	<20	<20	å	å	å	ф	7.36	7.36	8.5	8.5
10-Nov-2013	0.00288	0.00288	9. 7	<20 20 20 20	²⁰	ਰੂਂ ਹ	ဝ ှ (8.74	8.74	ည	ω,
10-Jan-2014	0.00288	0.00288	. 4	02,02	8 8	ģ Ç	ģ ç			7.98	7.98	0.55 6	65.0
10-Feb-2014	0.00288	0.00288	1.5	<20	<20 <20	ᅧ	ģģ			7.7	7.7	<5.0	<5.0
10-Mar-2014	0.00432	0.00432	7	<20	<20	å	ô			7.84	7.84	<5.0	<5.0
10-Apr-2014	0.00288	0.00288	<1.0	<20	<20	å	ģ			7.47	7.47	<5.0	<5.0
10-May-2014	0.00432	0.00432	ب ن	²⁰	²⁰	ල් <u>ද</u>	ල් <u>ල</u>			7.34	7.34	<5.0	<5.0
10-Jul-2014	0.00288		0.7	2 6	0 00	ģ ç	ģ ç			7.55	7.55	<5.0	<5.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
10-Aug-2014	0.00288		1.6	\$ 50	¢ 50 70 70 70 70 70	å å	ģ ö			7.42	747	5.0	5.0 5.0
10-Sep-2014	0.00288		2.1	<20	<20	å	å	, a		7.14	7.14	<5.0	<5.0
10-Oct-2014	0.00576		1.9	<20	<20	å	å	å	φ	7.42	7.42	<5.0	<5.0
10-Nov-2014	0.0072	0.0072	1.7	<20 <	<20	å	ģ			7.62	7.62	<5.0	<5.0
10-Dec-2014	0.0072	0.0072	e. c	02.0	0.50	ਰੂਂ ਫ਼	ģ (7.4	7.4	<5.0	<5.0
10-Feb-2015	0.00576	0.00576	- 4	02,00	0 60	ģ (ģ <			7.7	7.19	<5.0	<5.0
10-Mar-2015	0.00432	0.00432	. .	<20	<20	ģ ģ	ģ ç			7.83	7.7	0.05	45.0
10-Apr-2015	0.0072	0.0072	7	<20	<20	ģ	ᅌ			7.59	7.59	<5.0	<5.0
10-May-2015	0.00432	0.00432	2.3	<20	<20	4Q	å			6.92	6.92	<5.0	<5.0
10-Jun-2015 Permit I imit	0.0072	0.0072	140	<20	⁴ 20	습	ộ	1	:	7.76	7.76	<1.8	<1.8
AVG	0	ž	2	Ŗ	R	9	5	Ź	Z	0.9	0.6	30	09

Norfolk Southern Shaffers Crossing DMR Data - Outfall 902 Storm Event Monitoring

	Flow	Nitrite +	pl	Н	TSS	TPH
DMR	Precip Event	Nitrate	min	max		
Due Date	MG	mg/l	su	su	mg/l	mg/l_
10-Mar-2011	0.00096				<5.0	
10-Sep-2011	0.00048	5.1	7.89	7.89	5	<4.6
10-Mar-2012	0.00144				5	
10-Sep-2012	0.00096	3.2	6.94	6.94	< <u>5</u> .0	<4.6
10-Mar-2013	0.00024				<5.0	
10-Sep-2013	0.00126	6.4	7.11	7.11	<5.0	<5.1
10-Mar-2014	0.0009				<5.0	
10-Sep-2014	0.0003	3.2	6.86	6.86	<5.0	<ql< td=""></ql<>
10-Mar-2015	0.000196				<5.0	
Permit Limit	NL	NL	6.0	9.0	60	NL
Benchmark	NA	0.68	6.0	9.0	100	15

Form 2F Mo	nitoring Data
Oil & Grease	<5.2 mg/l
BOD	<2.0 mg/l
COD	<10 mg/l
Total Nitrogen	3.1 mg/l
Total Phosphorus	0.23 mg/l
TR Copper	<20 µg/l
TOC	1.8 mg/l

Norfolk Southern Shaffers Crossing DMR Data - Outfall 004 Storm Event Monitoring

	Flow		
DMR	Precip Event	TSS	TPH
Due Date	MG	mg/l	mg/l
10-Oct-2010			0.55
10-Mar-2011	0.00144	130	
10-Aug-2011			0.94
10-Sep-2011	0.00036	25	
10-Oct-2011			0.94
10-Mar-2012	0.00144	10	
10-Aug-2012			0.33
10-Sep-2012	0.0012	63	9.8
10-Oct-2012			0.33
10-Feb-2013			<4.0
10-Mar-2013	0.00024	15	
10-Sep-2013	0.00021	<5.0	
10-Mar-2014	0.00036	340	<ql< td=""></ql<>
10-Sep-2014	0.0006	130	<ql< td=""></ql<>
10-Mar-2015	0.00072	200	
Permit Limit	NL	NL	NL
Benchmark		100	15.0

Form 2F Monit	oring Data
Oil & Grease	<4.8 mg/l
BOD	12 mg/l
COD	38 mg/l
Total Nitrogen	1.1 mg/l
Total Phosphorus	<0.10 mg/l
TR Copper	<20 µg/l
TOC	7.5 mg/l

Norfolk Southern Shaffers Crossing DMR Data - Outfall 005 Storm Event Monitoring

	Flow	Nitrite +	pl	Н		
DMR	Precip Event	Nitrate	min	max	TSS	TPH
Due Date	MG	mg/l	su	su	mg/l	mg/l
10-Mar-2011	0.00192				95	
10-Sep-2011	0.0006	0.33	7.92	7.92	17	<4.6
10-Mar-2012	0.00144				<5.0	
10-Sep-2012	0.0024	0.63	6.81	6.81	210	10
10-Mar-2013	0.00024				<5.0	
10-Sep-2013	0.00084	2.17	6.92	6.92	<5.0	<4.8
10-Mar-2014	0.0009				84	
10-Sep-2014	0.0006	0.21	8.01	8.01	<mark>9</mark> 1	<ql< td=""></ql<>
10-Mar-2015	0.00096				150	
Permit Limit	NL	NL	6.0	9.0	NL	NL
Benchmark		0.68	6.0	9.0	100	15

Form 2F Mon	itoring Data
Oil & Grease	<4.9 mg/l
BOD	<2.0 mg/l
COD	15 mg/l
Total Nitrogen	1.6 mg/l
Total Phosphorus	<0.10 mg/l
TR Copper	<20 µg/l
TOC	3.4 mg/l

Acute toxicity test results from effluent collected from Outfall 002

	I I I I I I I I I I I I I I I I I I I	1	III Oddian ooz		
Test Period/Date	Ceriodaphnia dubia	Pimephales Promelas	LC50 %	%Survival in 100%	Hardness Mg/l
July 1995	ı	х	<100%	95	
March 1996		x	<100%	100	
April 1997		х	<100%	95	272
Jan 1998		, x	<100%	100	332
Dec 1998		х	<100%	100	159
Jan 2000		x	<100%	100	184
1 st annual Oct 2001	х	*	>100%	100	145
2 nd annual	No Discharge				
3 rd annual Nov 2003	х		>100	100	ukn.
4 th annual Nov 2004		х	>100	100	340

2001 test conducted by Central Virginia Laboratory and Consultants

2003-2004 tests conducted by Severn Trent Laboratories - Westfield, MA

Chronic toxicity test results from effluent collected from Outfall 002 Table 2.

	T	T CAMAGIN CONCERCT I	Tom Outlan 002		
Test Period/Date	Ceriodaphnia dubia	Pimephales Promelas	NOEC (survival)	NOEC (repr/grth)	Hardness mg/l
1 st quarter Oct 2001	x	х	100% 100%	100% 100%	160 153 145
2 nd quarter Feb 2002	x	x .	100% 100%	100% 100%	265 288 222
3 rd quarter May 2002	Х	х	100% 100%	100% 100%	232 214 220
4 th quarter	No Discharge				
1 st annual	No Discharge		West was a series of the serie		Millioned a place a process per transfer our activities are processed in transport
2 nd annual Dec 2003	х	х	100% 100%	100% 100%	376 324 376
3rd annual Dec 2004	х	х	100% 100%	12.5%* 100%	340 .

2001-2002 tests conducted by Central Virginia Laboratory and Consultants
2003 test conducted by ProChem Analytical Inc. 2004 tests conducted by Severn Trent Laboratories – Westfield, MA
* Nonlinear dose response. No significant difference between 100% effluent and control.

TABLE 3.—PARAMETER BENCHMARK VALUES		
Parameter name	Benchmark level	Source
Biochemical Oxygen Demand (5 day)	30 mg/L	4
Chemical Oxygen Demand	120 mg/L	5
Total Suspended Solids	100 mg/L	7
Oil and Grease	15 mg/L	8
Nitrate + Nitrite Nitrogen	0.68 mg/L	7
Total Phosphorus	2.0 mg/L	6
pH	6.0–9.0 s.u	4
Acrylonitrile (c)	7.55 mg/L	2
Aluminum Total (nH 6 5–9)	0.75 mg/L	1
Ammonia	19 mg/L	1
Antimony, Total	0.636 mg/L	9
Arsenic, Total (c)	0.16854 mg/L	9
Benzene	0.01 mg/L	10
Beryllium, Total (c)	0.13 mg/L	2
Butylbenzyl Phthalate	3 mg/L	3
Cadmium, Total (H)	0.0159 mg/L	9
Chloride	860 mg/L	1
Copper, Total (H)	0.0636 mg/l	9
Cyanide, Total	0.0636 mg/l	9
Dimethyl Phthalate	1.0 mg/l	11
Ethylbenzene	3.1 mg/L	3
Fluoranthene	0.042 mg/l	3
Fluoride	1.8 mg/l	6
Iron, Total	1.0 mg/L	12
Lead, Total (H)	0.0916 mg/l	1
Lead, Total (H)	0.0636 mg/l	۱
Magnesium, Total		
Manganese		13
Mercury, Total		1
Nickel, Total (H)	1.417 mg/L	
PCB-1016 (c)	0.000127 mg/L	9
PCB-1221 (c)	0.10 mg/L	
PCB-1232 (c)	0.000318 mg/L	9
PCB-1242 (c)	0.00020 mg/L	10
PCB-1248 (c)	0.002544 mg/L	9
PCB-1254 (c)	0.10 mg/L	10
PCB-1260 (c)		9
Phenois, Total	1.0 mg/L	11
Pyrene (PAH,c)	0.01 mg/L	10
Selenium, Total (*)	0.2385 mg/L	9
Silver Total (H)	0.0318 mg/L	9
Toluene	10.0 mg/L	3
Trichloroethylene (c)	0.0027 mg/L	3
Zinc, Total (H)	0.117 mg/L	1
Sources:		
4 WEDA December ded Ambient Motor Quality Critoria " Aguto Agus	tio Life Freshwater	

- 1. "EPA Recommended Ambient Water Quality Criteria." Acute Aquatic Life Freshwater. 2. "EPA Recommended Ambient Water Quality Criteria." LOEL Acute Freshwater.
- 3. "EPA Recommended Ambient Water Quality Criteria." Human Health Criteria for Consumption of Water and Organisms.
- Secondary Treatment Regulations (40 CFR 133).
 Factor of 4 times BOD5 concentration—North Carolina benchmark.
- 6. North Carolina storm water benchmark derived from NC Water Quality Standards.
- 7. National Urban Runoff Program (NURP) median concentration.
- Median concentration of Storm Water Effluent Limitation Guideline (40 CFR Part 419).
 Minimum Level (ML) based upon highest Method Detection Limit (MDL) times a factor of 3.18.
- 10. Laboratory derived Minimum Level (ML).
- 11. Discharge limitations and compliance data.
- 12. "EPA Recommended Ambient Water Quality Criteria." Chronic Aquatic Life Freshwater.
- 13. Colorado—Chronic Aquatic Life Freshwater—Water Quality Criteria.

Notes:

- (*) Limit established for oil and gas exploration and production facilities only.
- (c) carcinogen.

(H) hardness dependent.

(PAH) Polynuclear Aromatic Hydrocarbon.

Assumptions:

Receiving water temperature ¥20 C.

Receiving water pH ¥7.8.

Receiving water hardness CaCO3 100 mg/L.

Receiving water salinity 20 g/kg

Acute to Chronic Ratio (ACR) ¥10.

			2	2	10	9	12	2	S	2	2	2	2	2	2	20	2	8.5	2	2	9	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1.8	5.8	9	10%	1/6M
	x Conc	mg/l	5	<5.0	10	9	12	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	20	<5.0	8.5	2	<5.0	9	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	41.8	5.8			
TSS	Avg Conc Max Conc	mg/l	5	<5.0	10					<5.0					5.0	20	5.0	3.5	2	:5.0									:5.0	<5.0	:5.0	65.0	:5.0	<5.0	<5.0	<5.0	<5.0	<1.8	5.8	30	19%	W9/1
	Avg	-		V				٧	V	V	V	V	V	V	V		V			•		•	•	•	•	•	•	•	•	•	•	•	•		•			·			•	
	×	_	5	2	<u>6</u>	21	32	92	96	4	9	6	4	4	=	25		92	74	86	*	2	*	47	8	25	42	4	14	7.42	25	4	19	7.	83	29	92	92	74			
H	Max	sn	5 7.45																																							
	Min	su	7.45	7.02	7.39	6.87	7.25	98.9	96.9	6.84	7.76	7.48	6.8	7.4	7.4	7.6	7	7.30	8.7	7.9	7.8	7.7	7.8	7.4	7.3	7.5	7.4	7.4	7.1	7.42	7.6	7.7	7.1	7.7	7.8	7.5	6.9	7.7	6.8	9		
	20																																									
TPH	Avg Conc Max Conc	mg/l				0.33												å												å												
۲	Avg Conc	mg/l				0.33												å												å												
			4.9	4.9	4.9	4.7	4.8	2	2	4.7	4.9	2	4.9	4.7	5.1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	S	က	Ŋ	ა	2	S	2	2	2	5.0	15	33%	1/3M
ase	ax Conc	l/gm	<4.9	<4.9	<4.9	<4.7	<4.8	<5.0	<5.0	<4.7	<4.9	۵۲	<4.9	<4.7	<5.1	^QL	^oL	ζQL	¢۵۲	۵۲ مال	۵۲ م	۵۲ مال	<ql< td=""><td>γÖL</td><td>γor</td><td>^oL</td><td>å</td><td>Ϋ́</td><td>δQL</td><td>ςΩL</td><td>å</td><td>å</td><td>å</td><td>^QL</td><td>^ûL</td><td>å</td><td>å</td><td>۵۲</td><td></td><td></td><td></td><td></td></ql<>	γÖL	γor	^oL	å	Ϋ́	δQL	ςΩL	å	å	å	^QL	^ûL	å	å	۵۲				
Oil & Grease	Avg Conc Max Conc	mg/l	<4.9	4.9	4.9	<4.7	<4.8	<5.0	<5.0	<4.7	<4.9	^QF	4.9	<4.7	<5.1	άL	ζÖL	ζÖL	ςΩL	۵۲ مار	۵۲ مار	^QL	4QL	<ql< td=""><td>^QL</td><td>ζQΓ</td><td>^QL</td><td><ql< td=""><td>ζο<u>Γ</u></td><td><ΩL</td><td>^oL</td><td>^QF</td><td>۵۲ مار</td><td>ζÔL</td><td>ζÔL</td><td>^۵L</td><td>^QL</td><td>ζQΓ</td><td>5</td><td>9</td><td>20%</td><td>W/L</td></ql<></td></ql<>	^QL	ζQΓ	^QL	<ql< td=""><td>ζο<u>Γ</u></td><td><ΩL</td><td>^oL</td><td>^QF</td><td>۵۲ مار</td><td>ζÔL</td><td>ζÔL</td><td>^۵L</td><td>^QL</td><td>ζQΓ</td><td>5</td><td>9</td><td>20%</td><td>W/L</td></ql<>	ζο <u>Γ</u>	<ΩL	^oL	^QF	۵۲ مار	ζÔL	ζÔL	^۵L	^QL	ζQΓ	5	9	20%	W/L
	Ave	_		20	. 02						50	50	50	20	50	20	20	20	20	20	20	20	50	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20.2	29	%0,	1/M
	onc	1																									<20	<20	<20		<20	<20	<20	<20	<20	<20	<20				-	
Copper, TR	Avg Conc Max Conc	l/gu	<20	<20	<20	<20	<20	<20	27	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	²⁰	<20	<20	<20	\$	8			Ÿ	٧			٧	٧ -	٧	· ·	2			
ပိ	Avg Co	l/gu	<20	<20	<20	<20	<20	<20	27	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	⁴ 20	⁴ 20	<20	<20				
700	Max Conc.	l/gm	2.4	3.3	3.9	2.5	2.1	7	1.8	2.6	1.8	2.1	1.9	1.7	4	4.	1.5	1.8	1.6	1.7	4	1.5	1.1	<1.0	1.3	1.8	4.	1.6	2.1	1.9	1.7	1.9	2.1	1.5	1.9	7	2.3	2	2.05	110	2%	1/6M
																																								Limit:		Frequency
	Daily Max	MGD	0.0288	0.0288	0.0288	0.0288	0.0288	0.00432	0.00288	0.00288	0.00288	0.0288	0.00144	0.00288	0.00288	0.00432	0.00432	0.00288	0.00288	0.00288	0.00288	0.00288	0.00432	0.00288	0.00432	0.00432	0.00288	0.00288	0.00288	0.00576	0.0072	0.0072	0.01008	0.00576	0.00432	0.0072	0.00432	0.0072				
Flow	Mo Avg Di		0.0288	0.00288	0.00288	0.0288	0.00288	0.00432	0.00288	0.00288	0.00288	0.00288	0.00144 (0.00288	0.00288 (0.00432	0.00432	0.00288	0.00288	0.00288	0.00288	0.00288	0.00432	0.00288	0.00432	0.00432	0.00288	0.00288	0.00288		0.0072	0.0072	0.01008	0.00576	0.00432	0.0072	0.00432	0.0072				
	Σ	~	o	0	Ö	0	Ö	Ö	Ö	o.	o.	o	o.	Ö	o	o	Ö	o	o	o	Ö	O	o	O	o	O	O	0	0	0	Ü	Ŭ	0	0	0	J	0	~				
		Date	112	012	012	012	012	012	013	013	013	013	2013	013	213	2013	2013	013	2013	2013	2014	2014	2014	014	2014	2014	014	2014	2014	2014	2014	2014	2015	2015	2015	2015	2015	2015				
		DMR Due Date	10-Jul-2012	10-Aug-2012	10-Sep-2012	10-Oct-2012	10-Nov-2012	10-Dec-2012	10-Jan-2013	10-Feb-2013	10-Mar-2013	10-Apr-2013	10-May-2013	10-Jun-2013	10-Jul-2013	10-Aug-2013	10-Sep-2013	10-Oct-2013	10-Nov-2013	10-Dec-2013	10-Jan-2014	10-Feb-2014	10-Mar-2014	10-Apr-2014	10-May-2014	10-Jun-2014	10-Jul-2014	10-Aug-2014	10-Sep-2014	10-Oct-2014	10-Nov-2014	10-Dec-2014	10-Jan-2015	10-Feb-2015	10-Mar-2015	10-Apr-2015	10-May-2015	10-Jun-2015				

ATTACHMENT D

EFFLUENT LIMITATIONS

- 1. WLA Spreadsheets from previous permit reissuance
- 2. STATS.EXE printouts from previous permit reissuance

7/20/2005 - 9:58 AM

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

NS Shaffers Grossing - 002

Lick Run UT

Receiving Stream:

=acility Name:

Permit No.: VA0001597

Version: OWP Guidance Memo 00-2011 (8/24/00)

(004400)	226 mg/L deg C deg C SU SU SU SU SU SU SU
(00,42,0) 1102 00 000000	Effluent Information Mean Hardness (as CaCO3) = 90% Temp (Mnual) = 90% Temp (Wet season) = 90% Maximum pH = 10% Maximum pH = Discharge Flow =
	Mixing Information Annual - 1Q10 Mix = 50 % - 7Q10 Mix = 50 % - 30Q10 Mix = 50 % Wet Season - 1Q10 Mix = 50 % - 30Q10 Mix = 50 %
	Stream Flows 1Q10 (Annual) = 0 MGD 7Q10 (Annual) = 0 MGD 30Q10 (Wet season) = 0 MGD 30Q10 (Wet season) = 0 MGD 30Q5 = 0 MGD Harmonic Mean = 0 MGD Annual Average = 0 MGD
	226 mg/L deg C deg C SU
	Jeam Information Wean Hardness (as CaCO3) = 10% Temperature (Annual) = 10% Maximum pH = 10% Maximum pH = Tier Designation (1 or 2) = 2ublic Water Supply (PWS) Y/N? = Frout Present Y/N? = Early Life Stages Present Y/N? =

(poted)	Background		Water Quality Criteria	ilty Criteria		ŀГ	Wasteload Allocations	llocations		▼	Antidegradation Baseline	au Baseline			1		-				
ss noted)	-		1	1011107		Γ		2000	1	T	nudegradatir	in Baseline	_		Talana de la constitución de la						
pthene	Conc.	Acute	Chronic HH (PWS)	TH (FWS)	壬	Acrito	Chronia	יסיאיםי די				-		Ani	Antidegradation Allocations	Allocations		Z	lost Limitin	Most Limiting Allocations	
Ļ	0	١,	-,	2	275.00	7	(פאאב) ביי סיייסיייס	_	E	Acute	Chronic HH (PWS)	(PWS)	壬	Acute	Chronic HH (PWS)	H (PWS)	· 壬	Acuto	Chronia	חות לטוונטי	
				0	2.7 E+U3	1	î	na n	2.7E+03	1	1	1	1	,	,		+	-	CIIIOIIIC	nn (PWS)	Ŧ
Acrylonitrile	.	1	i-	na	7.8E+02	ı	1	па	7.8E+02	1	ı	ı			i	ı	ı	1	ı	na	2.7E+03
Vidio C	o.	1	ı	Па	6.6E+00	1	1	БП	6.6E+00	1	1	- 1	1	1	ı	1	1	1	ı	па	7.8E+02
(mgn) (mg/l)	0	3.0E+00	ı	па	1.4E-03	3.0E+00	1	па	1.4E-03	1	ı	11 1	ı	1	ı	1	1	ī	1	па	6.6E+00
Yearly) Vmmonia-N (mon)	0	5.84E+01	7.09E+00	na	1	5.8E+01	7.1E+00	2				ļ	ı	1	1	I.	i I	3.0E+00	1	па	1.4E-03
High Flow)	0	5.84E+01	7.095+00					2		ı	ı	ı	1	ı	1	í	ı	5.8E+01 7	7.1E+00	па	1
Anthracene	C		20.	<u> </u>	ı	5.8E+01	7.1E+00	a	ı	1	ı	1	1	. '							
volimo	2	1		e	1.1E+05	1	ı	па	1.1E+05	1	ı	1	-		ı	ı	ui I	5.8E+01 7	7.1E+00	na	1
recori.	ο.	1	1	БП	4.3E+03	1	1	ua	4.3E+03	,	1			1	1	í	1	1	1	na.	1.1E+05
	0	3.4E+02	1.5E+02	<u>e</u>	1	3.4E+02	1.5E+02	па	1	1	,		ı	í	1	1	1	1	ı	na	4.3E+03
Sendini Senzone C	0	ı	1-	па	1	1	1	па	,	ı		1 1	ı	I	1	1	ا ب	3.4E+02 1	1.5E+02	na	1
Benzidine	0.	ı	1	Па	7.1E+02	1	1	na en	7.1E+02	ı	1	r 1	1	Ĭ	t	ı	1	ı	1	na	1
Jenzo (a) anthraces C	0	ī	1	ВП	5.4E-03	1	1	па	5.4E-03	1		1	ı	i	1	í	1	1	1	па	7.1E+02
Jonzo (b) dinamente	0	1	1	па	4.9E-01	1	ı	Ba	4.9E-01	,		ı	ı	ı	1	1	1	ı	1	na	5.4F
Jenzo (k) fluorathera C	٥)	1	T	na	4.9E-01	1	1	na	4.9E-01	1		1		1	1		1	1	ı	na	4.9F
lenzo (a) nurene C	0	1	1	па	4.9E-01	1	1	na	4.9E-01	1		()		1	1	ı	1	1	1	na	4.9E-01
liso_Chloroglad Cite	0	ı		e ,	4.9E-01	ī	1	na	4.9E-01	1		ı	1	1	ı	1	1	1	ı	па	4.9E-01
lis2-Chloroisoppost Ether	0 0	ı	1	E	1.4E+01	1	ī	na 1	1.4E+01	1	1	1)	1	ı	ı	ı	,	1	ï	na	4.9E-01
Iromoform ^C	0		1	па	1.7E+05	r	i	na	1.7E+05	,			ı	ı	1	ı		1	,	па	1.4E+01
oteledidopozoalylu	0.5	1	1	па	3.6E+03	ı	1	па	3.6E+03	1	1	1 1	1	1	1	ı	ı	1	ı	В	1.7E+05
odmina de la company de la com	D	1	I	па	5.2E+03	ı	1	na	5.2E+03	ı	1	N I	ı	ı	ĭ	1	1	1	1	na	3.6E+03
arthon Tetrachloride C	0	9.8E+00	2.2E+00	na	ı	9.8E+00 2	2.2E+00	na	1	ı	. 1	ı	1	ı	1	1	ı	1	1	na	5.2E+03
Plomban C	0	1	1	B	4.4E+01	1	1	na 4	4 4F+01	1		i	1	ı	ı	1	- 9.8	9.8E+00 2	2.2E+00	na	1
<u>p</u>	0.	2.4E+00	4.3E-03	na	2.2E-02	2.4E+00 4	4.3E-03		2 2E-02	1 3	ı	1	1	1	ı	1	1	1	1	na	4.4E+01
nionde	0	8.6E+05	2.3E+05	БП	ı	8.6E+05 2	2.3E+05			ı	1	ı	1	ı	1	1	- 2,4	2.4E+00 4	4.3E-03	па	2.2E-02
	0	1.9E+01	1.1E+01	па	1		1.1E+01	! E	ı	1 1	1		1	1	1	1	- 8.£	8.6E+05 2	2.3E+05	na	ı
allior openzene	0		1	па	2.1E+04	ı	ı		2.1E+04	ı		1	ı	í	ı	1	1.9	1.9E+01 1	1.1E+01	па	ı
			-										1	1	1	1	ı	1	;	na	2.1E+04

arameter	Background		Water Qua	Water Quality Criteria			Wasteload Allocations	VIlocations		A	Antidegradation Baseline	n Baseline	-	, to A	A sollaboration		-				
ug/l unless noted)	Conc.	Acute	Chronic	Chronic HH (PWS)	壬	Acute	Chronic HH (PWS)	H (PWS)	壬	Acute	Chronic HH (PWS)	H (PWS)	壬	Acute	Chronic Hu (DMC)	liocations	+		a⊢	locations	
hloroform c	0	1	1	na	3.4E+02	'n	,	na	3.4E+02	1	ı	6 1	1	7	וומווכ	(SWE)	Ŧ	8	읃	(S)	王
orotorm -	0	1	-1	B	2.9E+04	1	1	па	2.9E+04	í	1	1		ı	1	ı	1		1	na .	3.4E+02
-Chloronaphthalene	0	1	-1	па	4.3E+03	1	1	20	4.3F+03			r i		ı	1	1	ı	ı	1	na	2.9E+04
-Chlorophenol	0	ı	·	ВП	4.0E+02	1	1		4 0F±02	. 1	1 .	1	1	ı	1	1	1		ı	na .	4.3E+03
Chlorpyrifos	0	8.3E-02	4.1E-02	_ 	1	8.3E-02	4.1E-02		1	()		1	1	:	,	1	ı	ī	1	na	4.0E+02
thromium III	0	1.1E+03	1.4E+02	na	1		1.4E+02			ı	1	Į.	1	ı		1	1	8.3E-02 4.	4.1E-02	na	1
Shromium VI	0	1.6E+01	1.1E+01	ВП	1		1.15+01	2 2		1	i	ı	í	1	1	ı	-	1.1E+03 1.4	1.4E+02	na	1
Shromium, Total	0	ı	1	na	ı			<u> </u>	ı	1	1	1	ı	1	1	,1	1.6	1.6E+01 1.1	1.1E+01	na	1
hrysene ^c	0	1	1	2	4 9F-04		II .	<u> </u>	. !	ı	1	į	1	1	ı	1	1	1	1	na	1
Sopper	0	2.9E+01	1.8E+01	2 2		0.00	1 0	e l	4.9E-01	ī	ì	1	1	1	1	1	1	1	ı	na	4.9E-01
yanide	0	2.2E+01	5.2E+00	2 2	2 25+05		1.01101	e l	1 1	1	ı	,	1	ı	ı	1	1 2.9	2.9E+01 1.8	1.8E+01	na	ı
2000	0	,	1	2 2	8 4E-03		3.45+00	E :	2.2E+05	ı	1	1	1	1	ı	1	- 2.2	2.2E+01 5.2	5.2E+00	na	2.2E+05
DE °	0	,	ı I	<u> </u>	20-11-03	1	ı	na	8.4E-03	1	ı	1	1	Í	1	1	1		,		8 4F-03
DT c	0	1.1E+00	1 OF-03	<u> </u>	20-11-0	1 1	1 1	па	5.9E-03	1	1	ı	1	1	ı	1		i	,	<u> </u>	5.9E-03
Jemeton	0	1	, t	9 6	50.3	1.15+00	1.0E-03	па	5.9E-03	1	1	ı	1	1	1	1	1	00	1.0E-03	na na	5 9F-03
libenz(a,h)anthracene ^c	0		2	<u> </u>	1 1	ı	1.0E-01	na	ſ	ı	ì	1	1	1	1	1	1		1.0E-01		
libutyl phthalate	C			2	ביים וייים	1	ļ	В	4.9E-01	1	ī	1	1	ı	ı	1	,		1		- 10
lichloromethane		l	ı	E C	1.2E+04	1	1	па	1.2E+04	1	1	1	1	ı	1	1	1	1	1	3 6	1.35-01
Methylene Chloride) ^c	0	ı	- 1	БП	1.6E+04	ı	1	na	1.6E+04	1	,	1								!	
.2-Dichlorobenzene	0	1		па	1.7E+04	ı	1	ВП	1.7E+04	1	1			1	Ĭ	1	1	í	1	па	1.6E+04
,3-Dichlorobenzene	0	ı	1	па	2.6E+03	ı	ı	na	2.6E+03	ı	١	l I	ı	1	1	ı	1	1	ı	na	1.7E+04
4-Dichlorobenzene	0	1	-1-	na	2.6E+03	1	ı	<u>e</u>	2.6E+03	1	ı		1	1	ı	ı	,	1	ı	a	2.6E+03
.s-Ulchlarobenzidine	0	ı	-1	па	7.7E-01	1	1	na	7.7E-01	1	1	1		ı	:	1	1	ı		na	2.6E+03
orniorobromomethane C	0	1	-1	па	4.6E+02	ı	ı	- BI	4.6E+02	1	1			1	1	ī	1	ı	1	na	7.7E-01
inoloemane.	0.	ı	-1	па	9.9E+02	ı	ı	па	9.9E+02	ı	1	,	-	I)	ı	1		ĭ		na .	4.6E+02
1-Dichloroethylene	0	1	-1	па	1.7E+04	ı	1	па	1.7E+04	ı	ı			1	1	1	1	1	1	na	9.9E+02
A Dishipped A	0		-1	па	1.4E+05	ı	1	na	1.4E+05	1	1	1	1		ı	ı	1	1	1	na	1.7E+04
hlorophenoxy	0	1	-1	па	7.9E+02	1	Ĩ	na	7.9E+02	ı	1	1	-	ı	ı	1	1	î	,	na	1.4E+05
cetic acid (2,4-D)	0	1		Па	1	ı	1	2)				ı	ı	ı	1	1	1	na	7.9E+02
2-Dichloropropane	0	1	-1-	na	3.9E+02	ı	ı	. E	3.9E+02	1 1	1	ı	1	1	ı	1	1		1	na	1
3-Dichloropropene	0	, 1	1	па	1.7E+03	1	1	2	1.7E+03		1 1	r)	1	1	ı	1	1	Î	1	na	3.9E+02
veldnn *	0	2.4E-01	5.6E-02	па	1.4E-03	2.4E-01	5.6E-02	na	1.4E-03	ı	1 1	ı	1	1	1	ı	,	1	1	na	1.7E+03
iethyl Phthalate	0	1	1	па	1.2E+05	ı	1	na	1.2E+05			1 1	1	1	ı	1	- 2.4	2.4E-01 5.6	5.6E-02	a	1.4E-03
4 Pinnih in	0	1	-1-	ם	5.9E+01	1	ı	па	5.9E+01	ı	1	1		ı	1	ı	1		1	ua	1.2F
.4-Dimemyiphenoi	0	1	-1	na	2.3E+03	ı	1	па	2.3E+03	1	1	1	1 1	ı	1	1	1	1	1	na	5.9E+u.
Ametry Prinalate	0	1	-1-	па	2.9E+06	ı	1	<u> </u>	2.9E+06	1	1			ı	1	į	1		ı	na	2.3E+03
n-n-Butyl Phthalate	0	1	-1	ВП	1.2E+04	1	1	па	1.2E+04	1			ı	1	ı	1	ı		1	na	2.9E+06
,4 Dinitrophenol	0	1	-1-	na	1.4E+04	1	ı	e	1 4F+04			ı	1	î	ı	1	1	1	1	na	1.2E+04
-Methyl-4,6-Dinitrophenol	0	1	-1	ВП	7.65E+02	ſ	1		7 75+02	ı	ı	ı	ı	î ,	ı	1	1	1	1	na	1.4E+04
4-Dinitrotoluene	0	1	-1-	ВП	9.1E+01	1	,	2 2	0 15104	i	ı	ı	1	.1	1	1	1	1	ı	па	7.7E+02
strachlorodibenzo-p-dioxin)								9	9.10	i	1	ı	1	ı	1	1	1	1	:	na	9.1E+01
(0	1	-1	па	1.2E-06	1	1	20		ì											
2-Uphenylhydrazine	0	1	-1	na	5.4E+00	1	:		5 4E+00		í	ľ	ı	1	ı	ī	1	1	ī	na	na en
Ipha-Endosulfan	0	2.2E-01	5.6E-02	па	2.4E+02	2.2E-01	5.6E-02	2 2	2.4E+02	1	:	1	ı	1	1	í	ı	1	1	na .	5.4E+00
eta-Endosulfan	0	2.2E-01	5.6E-02	na	2.4E+02		5.6E-02	2 6	2 4F+02	1 1	ı	1	ı	ı	1	1	- 2.2		5.6E-02	па	2.4E+02
indosulfan Sulfate	0	1		na	2.4E+02		ı	9 2	2.4F+02		1	1	1	ı	1	ı	- 2.2	2.2E-01 5.6	5.6E-02	na	2.4E+02
indrin	0	8.6E-02	3.6E-02	na	8.1E-01	8.6E-02	3.6E-02	. 6	8.1E-01	1 1	1 1	1	1	ı	1	1	1		1,	па	2.4E+02
indrin Aldehyde	0	ī		na	8.1E-01	1	1		8.1E-01	1 1	1 1	1 1	1 1		ı	1		8.6E-02 3.6	3.6E-02	na	8.1E-01
																	1			na	8.1E-01

MSTRANTI 002 - 902.xls - Freshwater WLAs

'arameter	Background		Water	Water Origity Criteria																	
Jg/l unless noted)	Conc.	Acute	Chronic	Chronic HH (PWS)	Ξ	Action	Wasteload Allocations	llocations			Antidegradation Baseline	- 1		Antide	Antidegradation Allocations	locations		Mos	Most Limiting Allocations	locations	
:thylbenzene	0			6	,	anno	Cironic	_	Ŧ	Acute	Chronic HH	HH (PWS)	壬	Acute C	Chronic HH (PWS)		HH Ac	Acute Ch	Chronic HH	HH (PWS)	H
luoranthene	0	1	ı	2 2	3.75+02		ı	<u>na</u>	2.9E+04	1	ı	1	1	1	ı	,	1	,			2.9E+04
luorene	0	1	1	2 2	1 45+04	1 1	ı	na i	3.7E+02	ı	1		1	Ĺ	1	1	1	1	1		3.7E+02
oaming Agents	0	1	1	2 2	1	ı	ı	ВП	1.4E+04	ī	1	1	1	1		1	1		1		1 45+04
iuthion	0	1	1.0E-02	3 0		1	1 1	<u> </u>	1	1	1	1	1	1	1	1	1	1	1		
leptachlor c	0	5.2E-01	3.8E-03	2 6	2 1E-03	7000	20-502	B !	1 1	1	1	ı	1	1	1	ı	1	1	1.0E-02	Bu	,
leptachlor Epoxide ^c	0	5.2E-01	3.8E-03	2 2	1 15.03	5.2E-01	20-10-0	e i	2.1E-03	ı	ı	1	1	ı	1	1	5.2	5.2E-01 3.0	3.8E-03	na	2.1E-03
lexachlorobenzene	0	1	ī	, e	7 7E-03	0.41	2.05	B	1.15-03	ı	1	ı	1	1	1	1	5.2	5.2E-01 3.	3.8E-03	na	1.1E-03
lexachlorobutadiene ^C	0	ı	ī		201102	li i	1	e C	/./E-03	ı	ı	1	1	ı	1	1	1	1	1	na 7	7.7F-03
lexachlorocyclohexane				9	205-102	ı	ı	B	5.0E+02	ı	1	ı	1	1	ı	1	1	1	1	na 5	5.0E+02
lexachlorocyclohexane	0;	1	ī	па	1.3E-01	ı	ï	na	1.3E-01	ı	1	ı	1	1	4						
eta-BHC ^c	0	1	ī	na	4.6E-01	1	ı	2	4 6E-04						ı	ı	ı	1	1	na	1.3E-01
lexachlorocyclohexane		i i						!	-	ı	1	ĭ	,	1	1	ı	1	1	1	na ,	4.6E-01
	D	9.5E-01	е. —	па	6.3E-01	9.5E-01	1	na	6.3E-01	1	1	ĺ	1	ľ	1	1	- 1	9.5E.04	,		
lexachlorocyclopentadiene	0	1	1	па	1.7E+04	1	1	B	1.7E+04	1	1						;		ı		6.3E-04
lexachloroethane ^c	0	1	1	па	8.9E+01	1	1		1 D H		ı	1	1	ı	1	1	1	1	1	na 1	1.7E
lydrogen Sulfide	0	ı	2.0E+00	па	ı	1	2.0E+00	_ E	1	1	1 1	ı	1	ı	ı	1	1	ı	1	na 8	8.9E+01
Ideno (1,2,3-cd) pyrene	0	1	I	Б	4.9E-01	ı	1	B	4.9E-01	1	()	i	ı	í	1	1	;	- 2.0	2.0E+00	na	i
up .	0	1	ī	na	1	ı	1	23		1	1 1	i	,	1	i	1	1	1	1	na 4	4.9E-01
opnorone	0	ı	-1	na	2.6E+04	1	į	ВП	2.6E+04	ı	1 1			1	1	ı	1	1	1	па	1
ebone .	0	1	0.0E+00	па	1	ı	0.0E+00	Па	ı	1			ı	1	ı	1	,	1	ı	na 2	2.6E+04
ead	0	3.4E+02	3.8E+01	na	1	3.4E+02	3.8E+01	Па	ı	1	1		1	ı	ı	1	ı	100	0.0E+00	na .	1
lalathion	0	1	1.0E-01	na	1	1	1.0E-01	, e	ı	1	ſ		1	í		1	3.4	3.4E+02 3.8	3.8E+01	na	1
langanese	0	1	1	па	1	1	ı	eu eu	1		1 1	1	1	1	ı	1	1	1	1.0E-01	na	1
lercury	0	1.4E+00	7.7E-01	па	5.1E-02	1.4E+00	7.7E-01	B	5.1E-02	1	.)	1	1	1	1	1		:	1	na	1
lethyl Bromide	0	1	ı	па	4.0E+03	1	1		4.0F+03		1	ı	1	ī	1	1	1.4	1.4E+00 7.	7.7E-01	na	5.1E-02
lethoxychlor	0	1	3.0E-02	пa	1	1	3.0E-02	. E	3	1			1	ï	ı	1	1		1	na 4	4.0E+03
lirex	0	1	0.0E+00	na	1	1	0.0E+00	E	1		1	ı	1	ı	1	1	1	3.0	3.0E-02	na	1
lonochlorobenzene	0	ī	1	Ba	2.1E+04	ij	1	. e	2.1E+04		1	1	ı	1	1	1	1	- 0.0	0.0E+00	па	1
ickel	0	3.6E+02	4.0E+01	E	4.6E+03	3.6E+02	4.0E+01	B	4.6E+03			ı	1	ı	1	1	1		1	na 2	2.1E+04
itrate (as N)	0	ī	1	ВП	ı	1	ı	na	1	ı	1		ı	ı	ı	ı.	3.6	3.6E+02 4.0	4.0E+01	na 4	4.6E+03
Nijrogodimoth domino	0	1.	ī	na	1.9E+03	1	1	20	1.9E+03	1	1	1		ı	1	ı	1	1	1	na	1
- Nitrosodinieuryjamine	0	1	ī	па	8.1E+01	1	1	Bu	8.1E+01	ı	1	,	l l	ı	ı	1	1	ı	1	na 1	1.9E·
-Nitrosodi pragramme	0	1	1	па	1.6E+02	1	1	па	1.6E+02	1	,	,		ı	1	ı	1	ı	1	na 8	8.1E
au la constant de la	0	1	ī	па	1.4E+01	1	ı	na	1.4E+01	i	1			ı	1	i	1	1	1	na 1	1.6E+02
alatinon Paratra	0	6.5E-02	1.3E-02	па	ı	6.5E-02	1.3E-02	па	ı	1	1				1	ı	1		ı	na 1	1.4E+01
00-1010	0	1	1.4E-02	па	1	1	1.4E-02	B	1	1		.)		1	ı	ì	6.5	6.5E-02 1.3	1.3E-02	na	1
CB-1221	0	ı	1.4E-02	па	1	ì	1.4E-02	B	,	1	! !	1		1	1	1	1	1.4	1.4E-02	na	1
CB-1232	0	1	1.4E-02	na	1	I	1.4E-02	na	1				:	ı	1,	1	î	1,	1:4E-02	na	1
25-1242	0	1	1.4E-02	na	1	1	1.4E-02	na	1	,	()	ı å	1	ı	ı	1		1.4	1.4E-02	na	1
CB-1248	0	1	1.4E-02	na	1	ı	1.4E-02	na	1		r)		1	ı	ı		1	1	1.4E-02	na	1
- CB-1204	0	1	1.4E-02	na	1	ī	1.4E-02	2	ı		1 7	1		ı		ı	1	į.	1.4E-02	na	1
CB-1260	0	1	1.4E-02	29	1	1	1.4E-02	na Pu	1	1	1 1	1		1	ı	1		į.	1.4E-02	na	ı
CB Total	0	ı	1	па	1.7E-03	1	1	e	1.7E-03		1 1	1	, ,	1	i	1	1	ř	1.4E-02	па	
															1		1	1	1	na 1	1.7E-03

Mameter	Doologe		-																		
	packground		Water Quality Criteria	lity Criteria			Wastelpad Allocations	Mocatione		1											
3/I unless noted)	Conc.	Acute	Chronic	Chronic HH (PWS)	Ŧ	Action		STOCK OF THE PARTY			Antidegradation Baseline	on Baseline	1	Anı	Antidegradation Allocations	llocations		Most	1 imilian	Most I imiting Allocations	
intachlorophenol c		777	100	6		Acute	Chronic HH (PWS)	H (PWS)	Ŧ	Acute	Chronic HH (PWS)	H (PWS)	Ŧ	Acrite	Chronic	10,110,	+	F	Bulling	HIOCATIONS	
		7.7E-03	5.9E-03	na	8.2E+01	7.7E-03	5.9E-03	na	8.2F+01			1		anna	Curonic	HH (PWS)	HH	Acute Chr	Chronic H	HH (PWS)	壬
	0	ſ	ı	na	4.6E+06	1	I			i.	ı	ı	1	1	1	í	- 7.7	7.7E-03 5.9	5.9E-03	2	0 25104
	0	1			! !		l	2	4.65+06	ı	ı	ı	,	1	1	1			:	1	0.25.0
dionuclides (pCi/I			ı	B	1.1E+04	1	1	па	1.1E+04	1	1	1	1	1					ı	na	4.6E+06
(cept Beta/Photon)	0	1	1	2	,	1)						ı	ı	ı	,	•	,	na	1.1E+04
Sross Alpha Activity	C					ı	ı	na n	1	ı	ı	1	,	1	į						
3eta and Photon Activity		ı	ı	B	1.5E+01	1	ı	na	1.5E+01	1	1	1	,	N .	l I	í	1		,	na	1
rem/yr)	0	1	1	<u></u>	A DELO								ı	1	1	1			ı	na	1.5E+01
Strontium-90		_		9	4.00+00	ı	1	na	4.0E+00	1	ı	1	1	1							
}		ı	1	멸	8.0E+00	1	1	па	8.0E+00	ı	1	,		ı	ı	ī			1	na	4.0E+00
	0	1	ī	БП	2.0E+04	1	1	na	2.0E+04	ı			ı	ï	1	í		•	,	na	8.0E+00
	0	2.0E+01	5.0E+00	па	1.1E+04	2.0E+01	5.0E+00	9	4 4 1 1 0 4		ı	ı	1	Ĭ	1	1			,	20	2.0F+04
	0	1.4E+01	ī	па	1			: 8	5	ı	1	1	ı	ı	1	1	- 2.0E+01		5.0E+00	6	4 4 11 10 4
	0	ı	1	2	,			0	1	ı	1	1	ı	1	1	1	- 1.4F	1.4E+01	1		5
,2,2-Tetrachloroethane ^c	0	1				ı	ı	na	1	1	ı	1	,	1					ľ	2	:
trachloroethylene ^c	C		ı	<u> </u>	1.1E+02	1	ı	па	1.1E+02	ī	ı	1	1	1		ı			1	na	1
	D	1	ı	В	8.9E+01	ı	ı	Па	8.9E+01	1	1	1		ı	ı	ı				па	1.1E+02
	D	1	1	па	6.3E+00	ı	1	Па	6.3E+00	1	ı			ı	ı	ī			1	па	8.9E+01
derie	0	Í.	ı	па	2.0E+05	ı	1	па	2.0E+05	ı	1	1 1	1	ı	ı	ı	1		,	па	6.3F
kanhene C	0	1	ı	па	1	ı	1	na	ı	1		[]	 !	ı	1	1	1			па	2.0E+~_
_	0	7.3E-01	2.0E-04	na	7.5E-03	7.3E-01	2.0E-04	na	7.5E-03	1	1	Ü	ı	ı	1	1				na	1
	0,	4.6E-01	6.3E-02	na	ı	4.6E-01	6.3E-02	a	,	,	()	ı	1	ı	ı	ı	7.3E-01		2.0E-04	па	7.5E-03
.4-Inchloropenzene	0	1	1	na	9.4E+02	ī	1	na	9.4F+02	1	ı	í	ı	1	1	ı	- 4.6E-01		6.3E-02	na	1
thoroth.	0	1	1	па	4.2E+02	٠,	1	E	4 2F+02		ı	ı	1	1	ī	1	1		1	па	9.4E+02
yiene	0	ı	ı	na	8.1E+02	1	ı	2	8 15 103	ľ	ı	ı	1	ı	1	1	1			138	4 2F±02
o-Inchiorophenol	0	1	1	23	6.5E+01	,	- 1		20.11.00	ı	ı	ī	1	1	I	,	-				
c,4,3-1 nchlorophenoxy)					;		Î	19	6.55+01	1	1	ī	,	ı	1	1		5	E	a l	8.1E+02
M Chloride	D (4)	ı	1	ВП	1,	.1	1	па	1	1	1	-, 8							1	na	6.5E+01
	D. (1	ı	na	6.1E+01	1	. 1		6.1E+01	1	ı		1	1	1	1	1			na	1
	144. C. O. C.	2.3E+02	2.4E+02	ng Bu	6.9E+04	2:3E+02 2.4E+02	2.4E+02	БП	6.9E+04	1	1			1	ı	ı	1		1	na	6.1E+01
			*********										1	,	1	1	- 2.3E+02	+02 2.4E+02	+02	9	S OF TOA
			rete																		יים ביותי

,	
herwise	200
unless noted o	0
ms/liter (ug/l), 1	
d as micrograr	
ons expressed	
Il concentratio	
a.	- 1

Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals

Note: do not use Of 's laws than the	minimum QL's provided in agency	guidance													
Target Value (SSTV)		9.0E+01	na	1.3E+00	8.7E+01	6.4E+00	1.1E+01	E	2.3E+01	EL	5.1E-02	2.4E+01	3.0E+00	5.6E+00	9.4E+01
Metal	Antimony	Arsenic	Barium	Cadmium	Chromium III	Chromium VI	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Zinc

Metals measured as Dissolved, unless specified otherwise

^{&#}x27;C" indicates a carcinogenic parameter

Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information. Antidegradation WLAs are based upon a complete mix.

Antideg. Baseline = (0.25(WQC - background conc.) + background conc.) for acute and chronic

^{= (0.1(}WQC - background conc.) + background conc.) for human health

WLAs established at the following stream flows: 1Q10 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens,

⁻larmonic Mean for Carcinogens, and Annual Average for Dioxin. Mixing ratios may be substituted for stream flows where appropriate.

7/20/2005 - 9:59 AM

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

NS Shaffers Crossing - 005

Hortons Branch

teceiving Stream: acility Name:

Permit No.: VA0001597

Version: OWP Guidance Memo 00-2011 (8/24/00)

(00 - 10)	630 mg/L deg C SU SU SU SU MGD
	Effluent Information Mean Hardness (as CaCO3) = 90% Temp (Annual) = 90% Temp (Wet season) = 90% Maximum pH = 10% Maximum pH = Discharge Flow =
	% % % 000 000 000 000 000 000
	Mixing Information Annual - 1Q.10 Mix = - 7Q.10 Mix = - 30Q.10 Mix = - 30Q.10 Mix = - 30Q.10 Mix =
	ason) = 0 MGD
	Stream Flows 1Q10 (Annual) = 7Q10 (Annual) = 30Q10 (Annual) = 1Q10 (Wet season) = 30Q10 (Wet season) = 30Q5 = Harmonic Mean = Annual Average =
	(S30 mg/L deg C SU U SU U SU U V V
	itream Information lean Hardness (as CaCO3) = 0% Temperature (Annual) = 0% Temperature (Wet season) = 0% Maximum pH = 0% Maximum pH = ier Designation (1 or 2) = ubit: Water Supply (PWS) Y/N? = rout Present Y/N? = arfy Life Stages Present Y/N? =

	-		-																	
arameter	Background		Water Quality Criteria	lity Criteria			Wastelnad Allocations	Momentone		1			-							
g/I unless noted)	Conc.	Acute	Chronic	HH (PWS)	壬	Acuto	Chrosic III.	Siloranonis	1		Antidegradation Baseline	Baseline		Anti	Antidegradation Allocations	locations		Most Limi	Most Limiting Allocations	
cenapthene	10:	1		10		anno	Cironic	H (FWS)	Ŧ	Acute	Chronic HH (PWS)	(PWS)	Ŧ	Acute	Chronic HH	HH (PWS)	תרו	\vdash		1
- iolore		1	ı	па	2.7E+03	ı	1	БП	2.7E+03	1	,	1		1		1011	Acute	Chronic	HH (PWS)	Ŧ
crolein crolein	0	1	ī	В	7.8E+02	1	1	Па	7.8E+02	1			ı	1	ı	1	1	1	па	2.7E+03
crytonitnie -	0	Ī	ī	B	6.6E+00	1	ı	E	6 6F±00		l l	ı	,	1	ı	1	1	1	па	7.8E+02
nno (Nom) N-monit	0	3.0E+00	ī	na	1.4E-03	3.0E+00	1	29	1.4F-03		ı.	ι	1	1	ı		1	1	na	6.6E+00
'early)	0	5 84F±01	7 000 7	i					3	Ĺ	ı	1	1	ı	ı	ī	- 3.0E+00	. 00	па	1.4E-03
nmonia-N (mg/l)		2017		В	1	5.8E+01 7.1E+00	7.1E+00	na	1	ı	1	1		1	,					!
ligh Flow)	0	5.84E+01	5.84E+01 -7.09E+00	en	1	5.8E+01	7.1E+00	na	1	ı	1					ı	- 5.8E+01	7.1E+00	na	1
linracene	0	ı	1	na	1.1E+05	1	ı	Па	1.1E+05	1	1	ı	1	ı	1	1	- 5.8E+01	01 7.1E+00	па	•
ynomin.	0	í	1	na	4.3E+03	1	1	B	4.3E+03	ı	r ı	ı	1			ī	1	1	па	1.1E+05
Senic	0	3.4E+02	1.5E+02	na	ı	3.4E+02	1.5E+02	na	,	- 1	ı	1	1	1	1	ı	 	1	па	4.3E+03
mun	0	1	7	па	1	ı	ı	2	1			ı		ı	1	1	- 3.4E+02	1.5E+02	na	,
Suzene S	0	1	ī	a	7.1E+02	1	1		7.1E+02	1 1	ı	1	1	1	1	ı	1	1	na	,
Suzidine Suzikasi C	0	ı	1	па	5.4E-03	1	ı	a	5.4E-03	1			1	1	1	1	1	1	na	7.1E+02
anzo (a) antimacene	0	1	1	na	4.9E-01	1	1	B	4.9E-01	1	()	ı	r	ſ	ì	1	1	1	па	5.4F
ozo (v) fluorathere	0	ı	1	пa	4.9E-01	ī	1	БП	4.9E-01	1			1	1	ï	,	1	1	na	4.9E
'nzo (a) nwene c	o	ı	T	na	4.9E-01	1	ī	B	4.9E-01	,	1	,	ı	1	1	1	1	1	па	4.9E-01
2 Oblassit i Til	0	1	T	na	4.9E-01	1	1	na	4.9E-01	,			1	1	i	1	1	1	na	4.9E-01
22-Cilloroeinyi Etner	0	1	1	па	1.4E+01	ı	ı	па	1.4E+01	1	! !		1	ı	1	,	1	1	na	4.9E-01
omoform ^c	0	ı	ī	ВП	1.7E+05	1	ı	na	1.7E+05	1		ı	1	ı		1	1	1	па	1.4E+01
	0	1	ı	БП	3.6E+03	1	ı	na	3.6E+03	,	()	ı	1	Ĺ	1	1	1	1	na	1.7E+05
ityidenzyiphthalate	0	1	1	па	5.2E+03	1	ı	e	5 2F+03		ı	1	1	ı	ı	1	1	1	na	3.6E+03
maimpi .	0	1.9E+01	3.4E+00	B	1	1.9E+01	3.4F+00		3	ı	ı	ı		1	ı	1	1	1	Па	5.2E+03
rbon Tetrachloride	0	1	1	БП	4.4E+01	1	} ! !	2 6	1 1	1	ı	1.	ī	1	1	1	1.9E+01	11 3.4E+00	na L	
llordane Č	0	2.4E+00	4.3E-03	na	2.2E-02	2.4E+00	4.3F-03	<u> </u>	1045401	ì	ī	,	1	ī	1	ı	1	ı	na	4.4E+01
lloride	0	8.6E+05	2.3E+05	na	ı	8.6E+05	2.3F+05	2 2	Z.ZE-02	1	ī		1	ī	ı	ı	- 2.4E+00	0 4.3E-03	па	2.2E-02
ပ္တ .	0	1.9E+01	1.1E+01	па	ı	1.9E+01	1.1E+01	2 6		ı	ı	ı	1	1	1	1	- 8.6E+05	S 2.3E+05	na	1
llorobenzene	0	1.	1	na	2.1E+04	1	ı	! [2	2 1E+04	ı	1	1		1	1	ı	- 1.9E+01	1.1E+01	na	1
								2												

2.1E+04

'aramolor																					
Influence and adv	Background		Water Quality Criteria	lity Criteria	L		Wasteload Allocations	Allocations		An	Antidegradation Baseline	Baseline	-	Childo	Antidoomdotics All		-				
hlorodibromomethane	Conc.	Acute	Chronic	Chronic HH (PWS)		Acute	Chronic HH (PWS)	(PWS)	壬	Acute	Chronic HH		Ŧ	Acute of the	Chronia HI (Diago)		+		5-		
hloroform ^C	-	1	ï	na	3.4E+02	1	1	na	3.4E+02	,			+	7	I HH (I	HH (SM)	Ă	ช็	王	_	壬
-Chloronaphthalene	0_(0	ı	1	па	2.9E+04	1	1	na	2.9E+04	ı	1	1	1	1	1	ı	-	1	na	3.4	3.4E+02
Chlorophenol	S	1	ı	na	4.3E+03	1	1	na	4.3E+03	ı	1	î				,		1	ทล	2.9	2.9E+04
hlomynifos		1 1	ī	B	4.0E+02	1	Í	na	4.0E+02	1	1	Ĭ					1	1	na	4.3	4.3E+03
hromium III		0.35-02	4.1E-02	na	ı	8.3E-02	4.1E-02	na	1	1	1		-						na	4.0	4.0E+02
hromium VI	D. 10	1.8E+03	2.3E+02	na	1	1.8E+03	2.3E+02	EL	1	1	1	,		1			- 8.3E-02	02 4.1E-02	02 na		1
homium Total	0	1.6E+01	1.1E+01	па	ı	1.6E+01	1.1E+01	na	1	1	1	1		1	1		- 1.8E+03	03 2.3E+02	02 na		1
hosene c	0	1	T	па	1	1	1	па	1	1	1			1			- 1.6E+01	01 1.1E+01	01 na		1
2000	0	1	ī	na	4.9E-01	ı	ı	na	4.9E-01	1	,		1	ı		•	1	1	na		1
obber	0	5.0E+01	2.9E+01	па	1	5.0E+01	2.9E+01	- E			ı	1		ī	1			1	na	4.9	4.9E-01
yanide	0	2.2E+01	5.2E+00	па	2.2E+05	2.2E+01	525+00	? ?	1 10 0	ı	ı	ı		ı			. 5.0E+01	01 2.9E+01	01 na		
200	0	1	1	па	8.4E-03	1	1	2 6	20.47.00	ı	ı	1	1	1			. 2.2E+01		00	2.2	2.2F±05
DE C	0	1	1	na	5.9E-03	1		2 6	0.45	1	ĩ	1	1	ī	1		1	1	E	8	8 4 11 03
DT°	0	1.1E+00	1.0E-03	<u> </u>	5.9F-03	1 11-100	1 10	E :	5.9E-03	1	ı	1		1	1		1	1		, n	20-14-02
emeton	, O	1	1.0E-01	20	1		20.10	Z	5.9E-03	Ĺ	ï	1	1	ī	1		. 1.1E+00	1.0	33	2 4	200
benz(a,h)anthracene ^C	0	1		2 6	1 1	1	1.0E-01	ם	,	1	i	1	1	,	1	1	-			n. C	-
butyl phthalate	Č		í	<u> </u>	4.9E-01	ı	1	па	4.9E-01	1	1	1	1	1	1	8		-10.1	En Fr		
chloromethane	5	1	ī	В	1.2E+04	1	1	Ba	1.2E+04	1	1	,				•		1	па	4.9	4.9E-01
fethylene Chloride) ^c	0	1	ı	2	, EE									Í				:	na	1.2	1.2E+04
2-Dichlorobenzene	0	1	,	! .	1 7 1 2 1 2 1	ı	1	œ E	1.6E+04	ı	1	1	1	1	1	ı		1	6	,	
3-Dichlorobenzene	0	1	- 1	2 2	יייייייייייייייייייייייייייייייייייייי	1	1	<u>в</u>	1.7E+04	1	1	1	1	1	1	J		1	B	1.6	1.5E+04
4-Dichlorobenzene	0	1		<u> </u>	2.05+03	ĺ	1	В	2.6E+03	ĵ.	1	ı		. 1	1	7 1		ı	па	1.7	1.7E+04
3-Dichlorobenzidine ^C	0	1		B 1	2.6E+03	1	1	B	2.6E+03	ï	1	1	,	1	1			1	na	2.6	2.6E+03
chlorobromomethane c	O		· · · ·	0	/./E-01	ı	1	па	7.7E-01	1	ţ	1		,	1		:	1	na	2.6	2.6E+03
2-Dichloroethane C) · C	i	ı	B	4.6E+02	ı	1	na	4.6E+02	ī	1	1		ı				1	na	7.7	7.7E-01
1-Dichloroethylene). c	ı	ı	na	9.9E+02	1	1	Ba	9.9E+02	1	ı	1		,		.	:	ī	na	4.6	4.6E+02
2-trans-dichloroethydono	5	ı	ī	na	1.7E+04	1	1	па	1.7E+04	ı	ı	1		F 8	1		1	1	па	9.9	9.9E+02
4-Dichlorophanol	D. C	1	1	E .	1.4E+05	ı	1	па	1.4E+05	1	ı	1			1		1	1	na	1.7	1.7E+04
4-Dichlorophenoxy	2	ı	1	na	7.9E+02	1	1	Bu	7.9E+02	1	1	1		ı	1		1	1	na	1.4	1.4E+05
elic acid (2,4-D)	0	ı	ı	na	ī	1	ı	o c							1		1	1	na	7.9	7.9E+02
2-Dichloropropane ^C	0	1	1	па	3.9E+02	. 1	1	g 0	1 10	ı	1	1	1	1	1		1	1	eu.		
3-Dichloropropene	0	1	ı	па	1.7E+03	ı	. 1	<u> </u>	3.35+02	ı	1	1	1	1	1	1	1	1			3 05±03
eldrin c	0	2.4E-01	5.6E-02	5	1			<u> </u>	1.7E+03	1	ı	1		1	1			3	! :	,	20.1
ethyl Phthalate	0	ı	ī	: e	125+05	7.46-01	5.65-02	ВП	1.4E-03	1	1	1	,	,	1	1	2.4E-01	15	P	7.7	1.75+03
-2-Ethylhexyl Phthalate C	0	1	1	6	200		ı	B	1.2E+05	ı	1	ı		1	1	1				t	1.450.03
4-Dimethylphenol	0	1	1	2 2	235.0	1	ı	29	5.9E+01	1	1	ī	1	1	,	1				1.25	-
methyl Phthalate	0	I	ī		20.00	ı	1	<u>e</u>	2.3E+03	1	1	1		1	1	,	-		TO	 	5.95+01
n-Butyl Phthalate	0	ı	1	2 2	201100	ı	ı	_	2.9E+06	1	1	1	,	1		1			200	2.3	Z.3E+03
† Dinitrophenol	0	1		2 2	1 4 1 104	ı	1	_	1.2E+04	1	i	1		1	1	1		1 1		2.9	Z.9E+06
Vethy/-4,6-Dinitrophenol	0	1	1		7 855.00	•	1		1.4E+04	1	1	1	,		1	1			9	7.	1.2E+04
I-Dinitrotoluene C	0	1	1	2 2	0 15-04	ı	1		7.7E+02	ī	1	1	,	1	1	1	1	1	E	1.4	1.4E+04
rachlorodibenzo-n-dioxin)				2	5	ı	ı	na 8	9.1E+01	1	ı	1	,	1	1	ı		1	E	7.7	7.7E+02
(br	O		1000	-														ı	B	9.1E+01	+0+
:-Diphenylhydrazine ^c	0	1	ı	e 1	1.2E-06	1	1	па	Bu	ı	1										_
ha-Endosulfan	C		1	B	5.4E+00	ı	1	na 5	5.4E+00	1	1	1				1	1.	1	па	E	na
ta-Endosulfan		Z.ZE-U1	5.6E-02	Ba	2.4E+02		5.6E-02	na 2	2.4E+02	1	ı	,		, ,	1	1	1		na	5.4E	5.4E+00
dosulfan Sulfate); (2,2E-01	5.6E-02	па	2.4E+02	2.2E-01	5.6E-02	na 2	2.4E+02	ı	ı			ı		1	2.2E-01		2 na	2.4E+02	+02
din)	1 L	1	na	2.4E+02		1	na 2	2.4E+02	ı	1	ı				1	2.2E-01	5.6	2 па	2.4E+02	:+02
drin Aldehyde)	8.bE-02	3.6E-02	па	8.1E-01	8.6E-02	3.6E-02	na 8	8.1E-01	ı			,		1	1	1		na	2.4E+02	+02
	100 CO		1	па	8.1E-01	1	1	na 8	8.1E-01	ı					1	ı	8.6E-02	2 3.6E-02	2 na	8.1E-01	-01
page 2 of 4									STATE OF THE PARTY							1	-	1	na	8.1E-01	5

arameter	Background		Water Qua	Water Quality Criteria			Wasteload Allo	Moretione					-								
ug/l unless noted)	Conc.	Acute	Chronic	Chronic HH (PWS)	壬	Acute	Chronic HH /BIA/E	ח לפועופו		1	Antidegradation Baseline		+	200	Antidegradation Allocations	cations		MostL	Most Limiting Allocations	tions	Γ
:thylbenzene	0	1	-1	E	0		2000	_	E 10	e e	Chronic HH (PWS)		王	Acute	Chronic HH (PWS)		HH Acute		ilc HH (PWS)	S) HH	Γ
-Inoranthene	0	1	1	E	3.7E+02		1	B 6	2.9E+04	ı	ī	1	1	ı	1		1	્રા	4	1 %	1 4
-Inorene	0	ı	1	E	1.4E+04	. 1		B 6	3.75+02	ı	1	ı	1	1	1	•	-		na	3.7E+02	- 2
oaming Agents	0.	.1	1			()			1.45+04	ı	1	1	ı	ı		:*	1		, c	1 45104	! >
Suthion	0	1	1.0E-02	2 2	1	ı	1 1	B	ı	ı	1	1	1	ı					5 6	1	
leptachlor ^c	0	5.2E-01	3.8E-03		100	1 1	1.05-02	œ		ı	1	1	1	ı	1		-	1.0			
leptachlor Epoxide ^C	o	5.2E-01	3.8E-03		2 1	0.25.0	5.85.03	e U	2.1E-03	ı	1	1	ĭ	1	,		- 5.2E-01		1 6	1 1	
lexachlorobenzene ^C	0	,	3	9 6	1 11 00	5.ZE-01	3.8E-03	na	1.1E-03	ī	í	1	1	1			5.2E-04		2 5	Z.1E-03	
lexachlorobutadiene ^C	C	ř	1	E C	7.7E-03	1	ı	па	7.7E-03	1	1	ı		ı	,				na	1.1E-03	<u></u>
lexachlorocyclohexane	ο,	ı	1	<u>e</u>	5.0E+02	1	1	па	5.0E+02	1	1	1		1					na	7.7E-03	<u>п</u>
upha-BHC ^c	0	1	1	2	1 20								8		Į.		i	1	na	5.0E+02	22
lexachlorocyclohexane				<u> </u>	1.35-1	ı	1	па	1.3E-01	1	1	1	1	ď			-	1	É	T	
leta-BHC ^c	0	ı	-1	2	4.6E-01	1	ı	na	4.6E-01	ı	ı	1			,				9	7.3E-0	
Samma BUCG I isday			cris (sec								ı	ı	ı	ı				1	na	4.6E-01	
(embane)	0	9.5E-01	E	na	6.3E-01	9.5E-01	1	na	6.3E-01	ı	1	1	1	1	,			;			
lexachlorocyclopentadiene	O	ı		na	1.7E+04	1	į	8	74					Í			- 9.5E-01	5	na	6.3E-01	
lexachloroethane ^c	0	1	- 1	2	0 E E		E :	<u> </u>	1.7 = +04	1	1	1	1	ī	1	•	-	1	2	4 75	18
lydrogen Sulfide	0		001300	<u> </u>	0.90	ı		na	8.9E+01	1	ı	1	ı	ı	1	•		J	2 1	u !	٦,
1deno (1,2,3-cd) pyrene C) C	N .	4.0E-100	<u> </u>	1	1	2.0E+00	na	1	ī		ï	1	1	,				E L	8.9E+01	
	0.0	1	1	e E	4.9E-01	1	1	па	4.9E-01	1	ı		,	1				2.0E+00	oo na	1	
Sociotodos	0	ī	1	na	1	1	1	па	1	1	1	1						1	na	4.9E-01	_
	0	ı	·,	па	2.6E+04	1	1	па	2.6E+04	ı	1		· · ·	ı				1	na	1	
epone	0	1	0.0E+00	na	ı	1	0.0E+00	E		1		ı	1	1	1			1	па	2.6E+04	4
ead	0	6.9E+02	7.9E+01	па	1	6.9E+02	7.9E+01	8				1		1 -2	ī	•	· -	0.0E+00	00 ria	1	
/alathion	O	ı	1.0E-01	na	1	1	10 H	? ?		ı	1	ı	ı	1	1		- 6.9E+02	-02 7.9E+01	D1 na	1	
Aanganese	0	1	1	БП	1	1		<u> </u>	1	ı	ı	1	ī	1	1	1	-	1.0E-01	na na	1	
hercury	0.	1.4E+00	7.7E-01	E	5.1E-02	1 4F±00	7 7 5 04	<u> </u>	1 1	1	ı	1	1	ı					20	1	
1ethyl Bromide	0	1	-1		4 05 103	1.1	10-11.7	B	5.1E-02	ı	1	1	,	ı	1		- 1.4E+00	7.7		1 1	_
1ethoxychlor	0	,	3.0F-02	? ?	50-10-1	ı	1	na	4.0E+03	1	ı	1	1	1	,		-		2 1	3.1E-02	N S
Airex	C		20.00	<u> </u>	1	1	3.0E-02	па	1	1	1	1	,	ı	1				na E	4.0E+03	<u></u>
Jonochlorobenzene		ı	0.0		1	1	0.0E+00	па	ı	1	1	1	ı		1			3.05-02	na na	1	
المراما	Ď.	1	1	na	2.1E+04	1	ï	Па	2.1E+04	1	1	ı						0.0E+00	oc na	1	
in and of the little	O	5.9E+02	6.5E+01	na	4.6E+03	5.9E+02	6.5E+01	па	4.6E+03	ı	1	1		ľ	,			1	na	2.1E+04	4
ווומוב (מאוא)	0	1	-1	па	1	1	1	na	ı	1	,			1	1	•	- 5.9E+02	·02 6.5E+01	on na	4.6E+03	
ilitopenzene	o:	1	1	па	1.9E+03	ı	,	na	1.9E+03			ı	1	ı	1			1	na	1	
Nilrosodinemiyamme	Ô	:		na	8.1E+01	1	ı	па	8.1E+01	,	ı	ı	1	ı				1	па	1.95	_
- Italia osocipi eriylamine	0	ı	-1-	п	1.6E+02	1	í	E	1.6F+C/2	1		t	1	ı	1			1	na	8.1E	•
-initiosodi-n-propylamine	0	1	-1-	па	1.4E+01	,		<u> </u>	1 45+01		ı	ı	1	1	í			1	па	1.6E+02	2
arathion	0	6.5E-02	1.3E-02	па	1	6.5E-02	13E-02	! 8		ı	1		1	1	1	•		1	na	1.4E+01	_
CB-1016	0	ı	1.4E-02	па	ı		1 4F-02	g (I	ı	1	1	ı	1	1		- 6.5E-02	02 1.3E-02	2 na	1	
'CB-1221	0		1.4E-02	e	. 1		1 1	9	ı	ı	1	ı	1	1	1	ı	1	1.4E-02	2	1	
'CB-1232	0	1	1.4E-02	2	,	[<mark>]</mark> []	1.45-02	e e	í	ı	1	ı	1	1	1			1.4E-02		1	
'CB-1242	0	1	1 4F-02	? 8		!	1.4E-02	E .	ı	1	ı	1	1	1	1			1 45-02	· ·	1	
CB-1248	0	1	1 4 1 02	D 0	ı	ı	1.4E-02	Ba	1	ı	ī	ı	1	1	1		_	7 45 00	9 1	1	
'CB-1254	0	,	1 15 02	E 1	1	ī	1.4E-02	na	ı	ī	ı	,		1	1	•	-	1.45-02	eu ua	1	
'CB-1260	Û		70 1	<u> </u>	1	ı	1.4E-02	na	1	ı	ı	ı	i	1	1			20-34-1	2 C	1	
'CB Total ^C) .c	1	1.45-02	eu	1	ı	1.4E-02	na	1	ı	ı	1	1	,	1		ı	יייים ו		1	
	5 7 5 5 To 10 10 10 10 10 10 10 10 10 10 10 10 10		,	e e	1.7E-03	,	1	na	1.7E-03	1	1	1	1	,	1			1.45-02	z na	ı	
																		1	ВП	1.7E-03	

'arameter	Backoround		Water O	Motor O cillario																
Charles and an Day			water Qua	uity Criteria			Wasteload Allocations	Allocations		An	Antidegradation Baseline	n Baseline		Anti	toomposite Allegaria					
on mess noted)	Conc.	Acute	Chronic	Chronic HH (PWS)	壬	Acute	Chronic HH (PWS)	H /PWC	3	1			+		Alliuegradation Allocations	Suc		Most Limi	Most Limiting Allocations	13
entachlorophenol ^C	0	7.7E-03	5.9E-03	2	8 2E±04	777	2000	_	E	Acute	Chronic HH (PWS)	H (PWS)	王	Acute	Chronic HH (PWS)	Ŧ	Acute	Chronic	HH (PWS)	Ħ
henol				2	0.42.50	1.15-03	5.9E-03	20	8.2E+01	ı	r	1	1	1	1	'	7 7E.03	1	4	
	100	ı	!	B	4.6E+06	1	1	e u	4.6E+06	ı	ı	1	1	1			2		E E	8.2E+01
adioniclides (oCin	0	1	1	па	1.1E+04	ı	ı	па	1.1E+04	ı	ı	1		ı	!	1	1	1	па	4.6E+06
except Beta/Photon)	0	1		į								ı	1	ı	1	1	1	1	na	1.1E+04
Contract of the Contract of th	はいいない		1	na	ı	1	1.	na	ı	1	1	ī	,	1						
Beta and Photon Activity	0	ı	.1	па	1.5E+01	1	1	па	1.5E+01	1	1	1	,	1)	! !	ı	1	1	па	1
nrem/yr)	ô	ı	1	E	4.0F+00									ı.	1	1	ı	ı	па	1.5E+01
Strontium-90	0	1					ı	9	4.05+00	ı	1	1	1		1	1	1	0.00)	
7		ı.	1	e E	8.0E+00	1	1	ВП	8.0E+00	ı	1	1	,	1			ı	ı	na	4.0E+00
	0	1	1	na	2.0E+04	ı	ı	na	2.0E+04	1	ı	1		ľ	1	i		1	па	8.0E+00
elenum	o	2.0E+01	5.0E+00	na	1.1E+04	2.0E+01	5.0E+00	ä	1 1 1 1 1 1 1) }			1	ı	ı	Ĭ	1	1	na	2.0E+04
ilver	0	3.7E+01	-1-	па	,	3.7E+01	1	? ?	5	1	1	ı	,	ı	1	1	2.0E+01	5.0E+00	e	1.1E+04
ulfate	0	1	-,	2	1			0	1	ı	ı	1	1	,	1	1	3.7E+01	1	<u> </u>	
1,2,2-Tetrachloroethane				2	ı	ı	ı	па	ı	ı	1	ı	,	1					!	
etrachloroethylene	D (10	ı	1	В	1.1E+02	ı	1	na	1.1E+02	I	1	1	,	1	1		1	ı	eu	ı
	O	1	-1	na	8.9E+01	1	1	na	8.9E+01	1	ı		-	l	1	ı	1	1	ยน	1.1E+02
nallium	Ó.	1	-1-	па	6.3E+00	ļ	1	2	6.3E+00				ı	1	1	i	1		na	8.9E+01
oluene	0	1	-1-	8	2.0E+05	ı	ı		201100	I	ı	1	1	ı	1	Ī	1	1	па	6.3F
otal dissolved solids	0.	1	- 1	2					2.0E-103	1	1	1	1	ı	1	1	1	1	e	2.0F+.
oxaphene c	C	107	- 1	?		ī	ı	па	ı	ı	I,	ı	,	1	1	1			!	3
in the disc))	1.3E-01	2.0E-04	па	7.5E-03	7.3E-01	2.0E-04	en .	7.5E-03	1	1	1	-	1		1	ı		па	ı
ייסמאוווו	0	4.6E-01	6.3E-02	na	1	4.6E-01	6.3E-02	п	, 1	ı	ı	1		ľ	1	ı	7.3E-01	2.0E-04	e	7.5E-03
.2,4-Inchlorobenzene	0	1	-1-	na	9.4E+02	ı	1	e	9 4F+02	1		ř	,	1	1	ľ	4.6E-01	6.3E-02	na	1
,1,2-1 nchloroethane	0	1	-1-	па	4.2E+02	ī	ì		4.2E+02	1	1 3	ı	1	1	1	1	1	1	Па	9.4E+02
ichioroethylene	0	ı	-1-	na	8.1E+02	1	ī		8.1E+02	1	()		,	ŧ	1 1	Ī	1	1	na	4.2E+02
,4,5-1 ncniorophenol	0	t	-1-	na	6.5E+01	1	i		6.5E+01		E 1	ı	1	ı	j i	1	1	1	na	8.1E+02
ropionic acid (Silvex)	0	ı		ć	1						1	1	1	1	ı I	1	1	1	na	6.5E+01
inyl Chloride ^C	C			2	1	1	ı	па	1	i	ı	1	1	ı	1	Ŋ				
ü	,	' '	1	В	6.1E+01	1	ı	па	6.1E+01	1	1	1	,	,		1	1	ı	na	ı
	0	3.8E+02	3.8E+02	na	6.9E+04	3.8E+02	3.8E+02	Па	6.9E+04	ı	ı	1		1	1	ı	1	1	na	6.1E+01
:00															1	1	3.8E+02	3.8E+02	na	6.9E+04

		1
		6
	-	im ac possouvo
	ı	lone o
	١	5
	ı	Cont
	I	COD
sətc	I	Ā
U	٠	

allons expressed as micrograms/liter (ug/l), unless noted otherwise

Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals

Metals measured as Dissolved, unless specified otherwise

"C" indicates a carcinogenic parameter

Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information.

Antidegradation WLAs are based upon a complete mix.

Antideg. Baseline = (0.25(WQC - background conc.) + background conc.) for acute and chronic = (0.1(WQC - background conc.) + background conc.) for human health

WLAs established at the following stream flows: 1Q10 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens,

Harmonic Mean for Carcinogens, and Annual Average for Dioxin. Mixing ratios may be substituted for stream flows where appropriate.

	Note: do not use QL's lower than the	minimum QL's provided in agency	guidance												•	
	Target Value (SSTV)	4.3E+03	9.0E+01	na	2.0E+00	1.4E+02	6.4E+00	1.8E+01	na	4.7E+01	EL.	5.1E-02	3.9E+01	3.0E+00	1.5E+01	1.5E+02
Motol		Antimony	Arsenic	Barium	Cadmium	Chromium III	Chromium VI	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Zinc

```
Analysis of the Shafffers sssing 002 effluent data dissolved copper
 Averaging period for standard = 4 days
 The statistics for dissolved copper are:
    Number of values
   Quantification level
                              1
  Number < quantification =
   Expected value
                     = 18.75
   Variance
                           = 126.5625
   C.V.
                              . 6
   97th percentile
                          = 45.62658
                           = Reasonable potential assumptions - Type 2 data
   Statistics used
 The WLAs for dissolved copper are:
 ∷∷ Acute WLA
                      = 31.49
   Chronic WLA
   Human Health WLA
Limits are based on chronic toxicity and 1 samples/month, 1 samples/week
   Maximum daily limit
                           29.11986
   Average weekly limit = 29.11987
   Average monthly limit = 29.11987
     Note: The maximum daily limit applies to industrial dischargers
           The average weekly limit applies to POTWs
           The average monthly limit applies to both.
The Data are
 2
.20
. 11
.. 37
 24
.16
 37
```

```
Analysis of the shaffers ( ssing outfall 002 effluen lata for dissolved lead
Averaging period for standard = 4 days
The statistics for dissolved lead are:
  Number of values
  Quantification level
                         = 1
  Number < quantification =
                             1
  Expected value
                          = 2.024263
  Variance
                          = 1.47515
  C.V.
                          = .6
  97th percentile
Statistics used
                          = 4.925877
                          = Reasonable potential assumptions - Type 1 data
The WLAs for dissolved lead are:
  Acute WLA
                     = 258.43
  Chronic WLA
                    = 29.36
```

NO LIMIT IS REQUIRED FOR dissolved lead

Human Health WLA = ----

The Data are
3
3
2
1
1
<1

Analysis of the Shaffers (ssing Outfall 002 effluen lata for dissolved zinc Averaging period for standard = 4 days

The statistics for dissolved zinc are:

Number of values = 8 Quantification level = 5 Number < quantification = 1

Expected value = 11.18678 Variance = 45.05188

C.V. = .6

97th percentile = 27.22211

Statistics used = Reasonable potential assumptions - Type 1 data

The WLAs for dissolved zinc are:

Acute WLA = 196.18 Chronic WLA = 177.69 Human Health WLA = ---

NO LIMIT IS REQUIRED FOR dissolved zinc

The Data are

159

93

< 5

21

33

41 14

20

Analysis of the NS Shaffer Crossing 002 effluent dat for ammonia Averaging period for standard = 30 days

The statistics for ammonia are:

Number of values Quantification level = .1 Number < quantification = 0 Expected value = .2 Variance = .0144

C.V. 97th percentile = .6

= .4866835

Statistics used = Reasonable potential assumptions - Type 2 data

The WLAs for ammonia are:

Acute WLA = 8.55 Chronic WLA = 1.95 Human Health WLA = ----

NO LIMIT IS REQUIRED FOR ammonia

The Data are . 2